Cryptography is a funny business; shady from the beginning, the whole business of codes and ciphers has been specifically designed to hide your intentions and move in the shadows, unnoticed. However, the art of cryptography has been changed almost beyond recognition in the last hundred years thanks to the invention of the computer, and what was once an art limited by the imagination of the nerd responsible has now turned into a question of sheer computing might. But, as always, the best way to start with this story is at the beginning…

There are two different methods of applying cryptography to a message; with a code or with a cipher. A code is a system involving replacing words with other words (‘Unleash a fox’ might mean ‘Send more ammunition’, for example), whilst a cipher involves changing individual letters and their ordering. Use of codes can generally only be limited to a few words that can be easily memorised, and/or requires endless cross-referencing with a book of known ‘translations’, as well as being relatively insecure when it comes to highly secretive information. Therefore, most modern encoding (yes, that word is still used; ‘enciphering’ sounds stupid) takes the form of employing ciphers, and has done for hundreds of years; they rely solely on the application of a simple rule, require far smaller reference manuals, and are more secure.

Early attempts at ciphers were charmingly simple; the ‘Caesar cipher’ is a classic example, famously invented and used by Julius Caesar, where each letter is replaced by the one three along from it in the alphabet (so A becomes D, B becomes E and so on). Augustus Caesar, who succeeded Julius, didn’t set much store by cryptography and used a similar system, although with only a one-place transposition (so A to B and such)- despite the fact that knowledge of the Caesar cipher was widespread, and his messages were hopelessly insecure. These ‘substitution ciphers’ suffered from a common problem; the relative frequency with which certain letters appear in the English language (E being the most common, followed by T) is well-known, so by analysing the frequency of occurring letters in a substitution-enciphered message one can work out fairly accurately what letter corresponds to which, and work out the rest from there. This problem can be partly overcome by careful phrasing of messages and using only short ones, but it’s nonetheless a problem.

Another classic method is to use a transposition cipher, which changes the order of letters- the trick lies in having a suitable ‘key’ with which to do the reordering. A classic example is to write the message in a rectangle of a size known to both encoder and recipient, writing in columns but ‘reading it off’ in rows. The recipient can then reverse the process to read the original message. This is a nice method, and it’s very hard to decipher a single message encoded this way, but if the ‘key’ (e.g. the size of the rectangle) is not changed regularly then one’s adversaries can figure it out after a while. The army of ancient Sparta used a kind of transposition cipher based on a tapered wooden rod called a skytale (pronounced skih-tah-ly), around which a strip of paper was wrapped and the message written down it, one on each turn of paper. The recipient then wrapped the paper around a skytale of identical girth and taper (the tapering prevented letters being evenly spaced, making it harder to decipher), and read the message off- again, a nice idea, but the need to make a new set of skytale’s for everyone every time the key needed changing rendered it impractical. Nonetheless, transposition ciphers are a nice idea, and the Union used them to great effect during the American Civil War.

In the last century, cryptography has developed into even more of an advanced science, and most modern ciphers are based on the concept of transposition ciphers- however, to avoid the problem of using letter frequencies to work out the key, modern ciphers use intricate and elaborate systems to change by how much the ‘value’ of the letter changes each time. The German Lorenz cipher machine used during the Second World War (and whose solving I have discussed in a previous post) involved putting the message through three wheels and electronic pickups to produce another letter; but the wheels moved on one click after each letter was typed, totally changing the internal mechanical arrangement. The only way the British cryptographers working against it could find to solve it was through brute force, designing a computer specifically to test every single possible starting position for the wheels against likely messages. This generally took them several hours to work out- but if they had had a computer as powerful as the one I am typing on, then provided it was set up in the correct manner it would have the raw power to ‘solve’ the day’s starting positions within a few minutes. Such is the power of modern computers, and against such opponents must modern cryptographers pit themselves.

One technique used nowadays presents a computer with a number that is simply too big for it to deal with; they are called ‘trapdoor ciphers’. The principle is relatively simple; it is far easier to find that 17 x 19 = 323 than it is to find the prime factors of 323, even with a computer, so if we upscale this business to start dealing with huge numbers a computer will whimper and hide in the corner just looking at them. If we take two prime numbers, each more than 100 digits long (this is, by the way, the source of the oft-quoted story that the CIA will pay $10,000 to anyone who finds a prime number of over 100 digits due to its intelligence value) and multiply them together, we get a vast number with only two prime factors which we shall, for now, call M. Then, we convert our message into number form (so A=01, B=02, I LIKE TRAINS=0912091105201801091419) and the resulting number is then raised to the power of a third (smaller, three digits will do) prime number. This will yield a number somewhat bigger than M, and successive lots of M are then subtracted from it until it reaches a number less than M (this is known as modulo arithmetic, and can be best visualised by example: so 19+16=35, but 19+16 (mod 24)=11, since 35-24=11). This number is then passed to the intended recipient, who can decode it relatively easily (well, so long as they have a correctly programmed computer) if they know the two prime factors of M (this business is actually known as the RSA problem, and for reasons I cannot hope to understand current mathematical thinking suggests that finding the prime factors of M is the easiest way of solving this; however, this has not yet been proven, and the matter is still open for debate). However, even if someone trying to decode the message knows M and has the most powerful computer on earth, it would take him thousands of years to find out what its prime factors are. To many, trapdoor ciphers have made cryptoanalysis (the art of breaking someone else’s codes), a dead art.

Man, there’s a ton of cool crypto stuff I haven’t even mentioned yet… screw it, this is going to be a two-parter. See you with it on Wednesday…


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s