The Value of Transparency

Once you start looking for it, it can be quite staggering to realise just how much of our modern world is, quite literally, built on glass. The stuff is manufactured in vast quantities, coating our windows, lights, screens, skyscrapers and countless other uses. Some argue that it is even responsible for the entire development of the world, particularly in the west, as we know it; it’s almost a wonder we take it for granted so.

Technically, out commonplace use of the word ‘glass’ rather oversimplifies the term; glasses are in fact a family of materials that all exhibit the same amorphous structure and behaviour under heating whilst not actually all being made from the same stuff. The member of this family that we are most familiar with and will commonly refer to as simply ‘glass’ is soda-lime glass, made predominantly from silica dioxide with a few other additives to make it easier to produce. But I’m getting ahead of myself; let me tell the story from the beginning.

Like all the best human inventions, glass was probably discovered by accident. Archaeological evidence suggests glassworking was probably an Egyptian invention in around the third millennia BC, Egypt (or somewhere nearby) being just about the only place on earth at the time where the three key ingredients needed for glass production occured naturally and in the same place: silica dioxide (aka sand), sodium carbonate (aka soda, frequently found as a mineral or from plant ashes) and a relatively civilised group of people capable of building a massive great fire. When Egyptian metalworkers got sand and soda in their furnaces by accident, when removed they discovered the two had fused to form a hard, semi-transparent, almost alien substance; the first time glass had been produced anywhere on earth.

This type of glass was far from perfect; for one thing, adding soda has the unfortunate side-effect of making silica glass water-soluble, and for another they couldn’t yet work out how to make the glass clear. Then there were the problems that came with trying to actually make anything from the stuff. The only glass forming technique at the time was called core forming, a moderately effective but rather labour-intensive process illustrated well in this video. Whilst good for small, decorative pieces, it became exponentially more difficult to produce an item by this method the larger it needed to be, not to mention the fact that it couldn’t produce flat sheets of glass for use as windows or whatever.

Still, onwards and upwards and all that, and developments were soon being made in the field of glass technology. Experimentation with various additives soon yielded the discovery that adding lime (calcium oxide) plus a little aluminium and magnesium oxide made soda glass insoluble, and thus modern soda-lime glass was discovered. In the first century BC, an even more significant development came along with the discovery of glass blowing as a production method. Glass blowing was infinitely more flexible than core forming, opening up an entirely new avenue for glass as a material, but crucially it allowed glass products to be produced faster and thus be cheaper than pottery equivalents . By this time, the Eastern Mediterranean coast where these discoveries took place was part of the Roman Empire, and the Romans took to glass like a dieter to chocolate; glass containers and drinking vessels spread across the Empire from the glassworks of Alexandria, and that was before they discovered manganese dioxide could produce clear glass and that it was suddenly suitable for architectural work.

Exactly why glass took off on quite such a massive scale in Europe yet remained little more than a crude afterthought in the east and China (the other great superpower of the age) is somewhat unclear. Pottery remained the material of choice throughout the far east, and they got very skilled at making it too; there’s a reason we in the west today call exceptionally fine, high-quality pottery ‘china’. I’ve only heard one explanation for why this should be so, and it centres around alcohol.

Both the Chinese and Roman empires loved wine, but did so in different ways. To the Chinese, alcohol was a deeply spiritual thing, and played an important role in their religious procedures. This attitude was not unheard of in the west (the Egyptians, for example, believed the god Osiris invented beer, and both Greeks and Romans worshipped a god of wine), but the Roman Empire thought of wine in a secular as well as religious sense; in an age where water was often unsafe to drink, wine became the drink of choice for high society in all situations. One of the key features of wine to the Roman’s was its appearance, hence why the introduction of clear vessels allowing them to admire this colour was so attractive to them. By contrast, the Chinese day-to-day drink of choice was tea. whose appearance was of far less importance than the ability of its container to dissipate heat (as fine china is very good at). The introduction of clear drinking vessels would, therefore, have met with only a limited market in the east, and hence it never really took off. I’m not entirely sure that this argument holds up under scrutiny, but it’s quite a nice idea.

Whatever the reason, the result was unequivocal; only in Europe was glassmaking technology used and advanced over the years. Stained glass was one major discovery, and crown glass (a method for producing large, flat sheets) another. However, the crucial developments would be made in the early 14th century, not long after the Republic of Venice (already a centre for glassmaking) ordered all its glassmakers to move out to the island of Murano to reduce the risk of fire (which does seem ever so slightly strange for a city founded, quite literally, on water).  On Murano, the local quartz pebbles offered glassmakers silica of hitherto unprecedented purity which, combined with exclusive access to a source of soda ash, allowed for the production of exceptionally high-quality glassware. The Murano glassmakers became masters of the art, producing glass products of astounding quality, and from here onwards the technological revolution of glass could begin. The Venetians worked out how to make lenses, in turn allowing for the discovery of the telescope (forming the basis of the work of both Copernicus and Galileo) and spectacles (extending the working lifespan of scribes and monks across the western world). The widespread introduction of windows (as opposed to fabric-covered holes in the wall) to many houses, particularly in the big cities, dramatically improved the health of their occupants by both keeping the house warmer and helping keep out disease. Perhaps most crucially, the production of high-quality glass vessels was not only to revolutionise biology, and in turn medicine, as a discipline, but to almost single-handedly create the modern science of chemistry, itself the foundation stone upon which most of modern physics is based. These discoveries would all, given enough time and quite a lot of social upheaval, pave the way for the massive technological advancements that would characterise the western world in the centuries to come, and which would finally allow the west to take over from the Chinese and Arabs and become the world’s leading technological superpowers.* Nowadays, of course, glass has been taken even further, being widely used as a building material (its strength-to-weight ratio far exceeds that of concrete, particularly when it is made to ‘building grade’ standard), in televisions, and fibre optic cables (which may yet revolutionise our communications infrastructure).

Glass is, of course, not the only thing to have catalysed the technological breakthroughs that were to come; similar arguments have been made regarding gunpowder and the great social and political changes that were to grip Europe between roughly 1500 and 1750. History is never something that one can place a single cause on (the Big Bang excepted), but glass was undoubtedly significant in the western world’s rise to prominence during the second half of the last millennia, and the Venetians probably deserve a lot more credit than they get for creating our modern world.

*It is probably worth mentioning that China is nowadays the world’s largest producer of glass.

Advertisement

Poverty Changes

£14,000 is quite a large amount of money. Enough for 70,000 Freddos, a decade’s worth of holidays, two new Nissan Pixo’s, several thousand potatoes or a gold standard racing pigeon. However, if you’re trying to live off just that amount in modern Britain, it quickly seems quite a lot smaller. Half of that could easily disappear on rent, whilst the average British family will spend a further £4,000 on food (significantly greater than the European average, for one reason or another). Then we must factor in tax, work-related expenses, various repair bills, a TV license, utility & heating bills, petrol money and other transport expenses, and it quickly becomes apparent that trying to live on this amount will require some careful budgeting. Still, not to worry too much though; it’s certainly possible to keep the body and soul of a medium sized family together on £14k a year, if not absolutely comfortably, and in any case 70% of British families have an annual income in excess of this amount. It might not be a vast amount to live on, but it should be about enough.

However, there’s a reason I quoted £14,000 specifically in the figure above, because I recently saw another statistic saying that if one’s income is above 14 grand a year, you are one of the top 4% richest people on planet Earth. Or, to put it another way, if you were on that income, and were then to select somebody totally at random from our species, then 24 times out of 25 you would be richer than them.

Now, this slightly shocking fact, as well as being a timely reminder as to the prevalence of poverty amongst fellow members of our species, to me raises an interesting question; if £14,000 is only just about enough to let one’s life operate properly in modern Britain, how on earth does the vast majority of the world manage to survive at all on significantly less than this? More than 70% of the Chinese population (in 2008, admittedly; the rate of Chinese poverty is decreasing at a staggering rate thanks to its booming economy) live on less than $5 a day, and 35 years ago more than 80% were considered to be in absolute poverty. How does this work? How does most of the rest of the world physically survive?

The obvious starting point is the one stating that much of it barely does. Despite the last few decades of massive improvement in the living standards and poverty levels in the world in general,  the World Bank estimates that some 20% of the world’s populace is living below the absolute poverty line of surviving on less than $1.50 per person per day, or £365 a year (down from around 45% in the early 1980s- Bob Geldof’s message has packed a powerful punch). This is the generally accepted marker for being less than what a person can physically keep body and soul together on, and having such a huge proportion of people living below this marker tends to drag down the global average. Poverty is something that the last quarter of the century has seen a definitive effort on the part of humanity to reduce, but it’s still a truly vast issue across the globe.

However, the main contributing factor to me behind how a seemingly meagre amount of money in the first world would be considered bountiful wealth in the third is simply down to how economics works. We in the west are currently enjoying the fruits of two centuries of free-market capitalism, which has fundamentally changed the way our civilisation functions. When we as a race first came up with the concept of civilisation, of pooling and exchanging skills and resources for the betterment of the collective, this was largely confined to the local community, or at least to the small-scale. Farmers provided for those living in the surrounding twenty miles or so, as did brewers, hunters, and all other such ‘small businessmen’, as they would be called today. The concept of a country provided security from invasion and legal support on a larger scale, but that was about it; any international trade was generally conducted between kings and noblemen, and was very much small scale.

However, since the days of the British Empire and the Industrial Revolution, business has got steadily bigger and bigger. It started out with international trade between the colonies, and the rich untapped resources the European imperial powers found there, moved on to the industrial scale manufacture of goods, and then the high-intensity sale of consumer products to the general population. Now we have vast multinational companies organising long, exhaustive chains of supply, manufacture and retail, and our society has become firmly rooted in this intense selling international economy. Without constantly selling vast quantities of stuff to one another, the western world as we know it simply would not exist.

This process causes many side effects, but one is of particular interest; everything becomes more expensive. To summarise very simply, the basic principle of capitalism involves workers putting in work and skill to increase the value of something; that something then gets sold, and the worker then gets some of the difference between cost of materials and cost of sale as a reward for their effort. For this to work, then one’s reward for putting in your effort must be enough to purchase the stuff needed to keep you alive; capitalism rests on the principle of our bodies being X% efficient at turning the food we eat into the energy we can use to work. If business is successful, then the workers of a company (here the term ‘workers’ covers everyone from factory floor to management) will gain money in the long term, enabling them to spend more money. This means that the market increases in size, and people can either sell more goods or start selling them for a higher price, so goods become worth more, so the people making those goods start getting more money, and so on.

The net result of this is that in an ‘expensive’ economy, everyone has a relatively high income and high expenditure, because all goods, taxes, land, utilities etc. cost quite a lot; but, for all practical purposes, this results in a remarkably similar situation to a ‘cheap’ economy, where the full force of western capitalism hasn’t quite taken hold yet- for, whilst the people residing there have less money, the stuff that is there costs less having not been through the corporation wringer. So, why would we find it tricky to live on less money than the top 4% of the world’s population? Blame the Industrial Revolution.

The Hairy Ones

My last post on the subject of music history covered the relatively short timespan between around 1950 and 1965, leaving off at about the time The Beatles began leading the ‘British Invasion’ of American music culture. This invasion was a confluence of a whole host of factors; a fresh generation of youths wishing to identify with something new as ‘theirs’ and different to their parents, a British music scene that had been influenced by the American one without being so ingratiated into it as to snub their ability to innovate and make a good sound, and the fact that said generation of youngsters were the first to grow up around guitar music and thus the first to learn to play them and other genre-defining instruments en masse. Plus, some seriously good musicians in there. However, the British invasion was only the first of a multi-part wave of insane musical experimentation and innovation, flooding the market with new ideas and spawning, in the space of less than a decade, almost every genre to exist today. And for the cause of much of part two, we must backtrack a little to 1955.

Y’see, after the Second World War Japan, the dominant East Asian power, had surrendered unconditionally to the Allies and there was no dominant force in the region. This created something of a power vacuum in the area, with a host of new governments trying to rise from the post-war chaos and establish themselves as such a power. Many of these new nations, including those of China, Cambodia, North Korea and North Vietnam, were Communist states, and therefore were a serious concern to the western world. The US in particular, as a fiercely capitalist power, were deeply worried by the prospect of the whole of South East Asia, according to communist theory, just amalgamating into another great communist superpower and landing them with next to zero chance of triumphing in their ‘battle against communism’ against the already hugely powerful Soviet Union. As such, they were hell-bent on preserving every ounce of capitalist democracy they could in the area, and were prepared to defend such governments with as much force as necessary. In 1950 they had already started a war in Korea to prevent the communist north’s invasion of the democratic south, with the practical upshot (after China joined in) of re establishing the border pretty much exactly where it had been to start with and creating a state of war that, officially, has yet to end. In 1955, a similar situation was developing in Vietnam, and President Dwight D Eisenhower once again sent in the army.

Cut to ten years later, and the war was still going on. Once a crusade against the onward-marching forces of communism, the war had just dragged on and on with its only tangible result being a steady stream of dead and injured servicemen fighting a war many, especially the young who had not grown up with the degree of Commie-hating their parents had, now considered futile and stupid. Also related to ‘the Red Scare’ was the government’s allowing of capitalist corporations to run haywire, vamping up their marketing and the consumer-saturation of America. This might have lead to a 15 year long economic boom, but again many of the younger generation were getting sick of it all. All of this, combined with a natural teenage predisposition to do exactly what their parents don’t want them to, lead to a new, reactionary counter-culture that provided an impetus for a whole wave of musical experimentation; hippies.

The hippie movement (the word is, strangely, derived from ‘hipster’) was centred around pacifism, freedom of love and sex (hence ‘make love not war’), an appreciation of the home made and the natural rather than the plastic and capitalist, and drug use. The movement exists to this day, but it was most prevalent in the late 60s when a craze took the American youth by storm. They protested on a huge variety of issues, ranging from booing returning soldiers and more general anti-war stuff (hippies were also dubbed ‘flower children’ for their practice of giving flowers to police officers at such demonstrations) to demonstrations on the banning of LSD or ‘acid’, one of their more commonly used drugs. This movement of wired, eco-centric vegetarians didn’t connect well with the relatively fresh, clean tones of rock & roll and The Beatles, and inspired new music based around their psychedelic and their ‘appreciation’ of drug use. It was in this vein that The Beatles recorded Lucy in the Sky with Diamonds, and why Jimi Hendrix and Janis Joplin rose to fame in a new genre known as ‘acid rock’ (named after the drug from which most of the lyrics were ‘inspired’). Characterised by long, confusing and hideously difficult solos (I’m looking at you Hendrix), this was the prominent genre on show at the infamous Woodstock festival of 1969, featuring Hendrix, Joplin, The Who, The Grateful Dead & Carlos Santana among other things. Woodstock was the high point of the hippie movement, with over half a million fans attending to smoke, listen to the music, skinny dip and make love in and around the lake and generally by as hippie as possible.

Hippie culture went downhill post-Woodstock; public outcry following the Altamont Free Concert close to San Francisco (where Hell’s Angels provided security and shot a concert-goer during The Rolling Stones’ set for brandishing a gun) coincided with ‘the hippie generation’ mostly growing up. The movement still exists today, and it legacy in terms of public attitudes to sexual freedom, pacifism and general tolerance (hippies were big on civil rights and respect for the LGBT community) is certainly considerable. But their contribution to the musical world is almost as massive; acid rock was a key driving force behind the development of the genres of folk rock (think Noah and the Whale) and heavy metal (who borrowed from Hendrix’s style of heavy guitar playing). Most importantly, music being as big a part as it was of hippie culture definitively established that the practice of everyone, even the lowliest, ‘commonest’ people, buying, listening to, sharing and most importantly making music themselves was here to stay.

The story of hippies covers just one of the music families spawned out of the late 60s. The wave of kids growing up with guitars and the idea that they can make their own music, can be the next big thing, with no preconceived ideas, resulted in a myriad of different styles and genres that form the roots of every style of modern rock music. This period was known as ‘the golden age of rock’ for a reason; before pop was big, before hip-hop, before rap, decades before dubstep, before even punk rock (born in the early seventies and disliked by many serious music nerds for being unimaginative and stupid), rock music ruled and rock music blossomed.

You could argue that this, then, marks the story of rock, and that the rest of the tale is just one long spiral downwards- that once the golden age ended, everything is just a nice depressing story. Well, I certainly don’t like to think of that as true (if only because I would rather not have a mindset to make me stop listening to music),  but even if it was, there is a hell of a lot of stuff left in this story. Over? Not for another post or two…

The Conquest of Air

Everybody in the USA, and in fact just about everyone across the world, has heard of Orville and Wilbur Wright. Two of the pioneers of aviation, when their experimental biplane Flyer achieved the first ever manned, powered, heavier-than-air flight on the morning of December 17, 1903, they had finally achieved one of man’s long-held dreams; control and mastery of air travel.

However, what is often puzzling when considering the Wright brothers’ story is the number of misconceptions surrounding them. Many, for instance, are under the impression that they were the first people to fly at all, inventing all the various technicalities of lift, aerofoil structures and control that are now commonplace in today’s aircraft. In fact, the story of flight, perhaps the oldest and maddest of human ambitions, an idea inspired by every time someone has looked up in wonder at the graceful flight of a bird, is a good deal older than either of them.

Our story begins, as does nearly all technological innovation, in imperial China, around 300 BC (the Greek scholar Archytas had admittedly made a model wooden pigeon ‘fly’ some 100 years previously, but nobody is sure exactly how he managed it). The Chinese’s first contribution was the invention of the kite, an innovation that would be insignificant if it wasn’t for whichever nutter decided to build one big enough to fly in. However, being strapped inside a giant kite and sent hurtling skywards not only took some balls, but was heavily dependent on wind conditions, heinously dangerous and dubiously useful, so in the end the Chinese gave up on manned flight and turned instead to unmanned ballooning, which they used for both military signalling and ceremonial purposes. It isn’t actually known if they ever successfully put a man into the air using a kite, but they almost certainly gave it a go. The Chinese did have one further attempt, this time at inventing the rocket engine, some years later, in which a young and presumably mental man theorised that if you strapped enough fireworks to a chair then they would send the chair and its occupants hurtling into the night sky. His prototype (predictably) exploded, and it wasn’t for two millennia, after the passage of classical civilisation, the Dark Ages and the Renaissance, that anyone tried flight again.

That is not to say that the idea didn’t stick around. The science was, admittedly beyond most people, but as early as 1500 Leonardo da Vinci, after close examination of bird wings, had successfully deduced the principle of lift and made several sketches showing designs for a manned glider. The design was never tested, and not fully rediscovered for many hundreds of years after his death (Da Vinci was not only a controversial figure and far ahead of his time, but wrote his notebooks in a code that it took centuries to decipher), but modern-day experiments have shown that his design would probably have worked. Da Vinci also put forward the popular idea of ornithopters, aircraft powered by flapping motion as in bird wings, and many subsequent attempts at flight attempted to emulate this method of motion. Needless to say, these all failed (not least because very few of the inventors concerned actually understood aerodynamics).

In fact, it wasn’t until the late 18th century that anyone started to really make any headway in the pursuit of flight. In 1783, a Parisian physics professor, Jacques Charles, built on the work of several Englishmen concerning the newly discovered hydrogen gas and the properties and behaviour of gases themselves. Theorising that, since hydrogen was less dense than air, it should follow Archimedes’ principle of buoyancy and rise, thus enabling it to lift a balloon, he launched the world’s first hydrogen balloon from the Champs du Mars on August 27th. The balloon was only small, and there were significant difficulties encountered in building it, but in the design process Charles, aided by his engineers the Roberts brothers, invented a method of treating silk to make it airtight, spelling the way for future pioneers of aviation. Whilst Charles made some significant headway in the launch of ever-larger hydrogen balloons, he was beaten to the next significant milestones by the Montgolfier brothers, Joseph-Michel and Jacques-Etienne. In that same year, their far simpler hot-air balloon designs not only put the first living things (a sheep, rooster and duck) into the atmosphere, but, just a month later, a human too- Jacques-Etienne was the first European, and probably the first human, ever to fly.

After that, balloon technology took off rapidly (no pun intended). The French rapidly became masters of the air, being the first to cross the English Channel and creators of the first steerable and powered balloon flights. Finally settling on Charles’ hydrogen balloons as a preferable method of flight, blimps and airships began, over the next century or so, to become an accepted method of travel, and would remain so right up until the Hindenburg disaster of 1937, which rather put people off the idea. For some scientists and engineers, humankind had made it- we could now fly, could control where we were going at least partially independent of the elements, and any attempt to do so with a heavier-than-air machine was both a waste of time and money, the preserve of dreamers. Nonetheless, to change the world, you sometimes have to dream big, and that was where Sir George Cayley came in.

Cayley was an aristocratic Yorkshireman, a skilled engineer and inventor, and a magnanimous, generous man- he offered all of his inventions for the public good and expected no payment for them. He dabbled in a number of fields, including seatbelts, lifeboats, caterpillar tracks, prosthetics, ballistics and railway signalling. In his development of flight, he even reinvented the wheel- he developed the idea of holding a wheel in place using thin metal spokes under tension rather than solid ones under compression, in an effort to make the wheels lighter, and is thus responsible for making all modern bicycles practical to use. However, he is most famous for being the first man ever, in 1853, to put somebody into the air using a heavier-than-air glider (although Cayley may have put a ten-year old in a biplane four years earlier).

The man in question was Cayley’s chauffeur (or butler- historical sources differ widely), who was (perhaps understandably) so hesitant to go in his boss’ mental contraption that he handed in his notice upon landing after his flight across Brompton Dale, stating  as his reason that ‘I was hired to drive, not fly’. Nonetheless, Cayley had shown that the impossible could be done- man could fly using just wings and wheels. He had also designed the aerofoil from scratch, identified the forces of thrust, lift, weight and drag that control an aircraft’s movements, and paved the way for the true pioneer of ‘heavy’ flight- Otto Lilienthal.

Lilienthal (aka ‘The Glider King’) was another engineer, making 25 patents in his life, including a revolutionary new engine design. But his fame comes from a world without engines- the world of the sky, with which he was obsessed. He was just a boy when he first strapped wings to his arms in an effort to fly (which obviously failed completely), and later published works detailing the physics of bird flight. It wasn’t until 1891, aged 43, once his career and financial position was stable and he had finished fighting in the Franco-Prussian War, that he began to fly in earnest, building around 12 gliders over a 5-year period (of which 6 still survive). It might have taken him a while, but once he started there was no stopping him, as he made over 2000 flights in just 5 years (averaging more than one every day). During this time he was only able to rack up 5 hours of flight time (meaning his average flight time was just 9 seconds), but his contribution to his field was enormous. He was the first to be able to control and manoeuvre his machines by varying his position and weight distribution, a factor whose importance he realised was absolutely paramount, and also recognised that a proper understanding of how to achieve powered flight (a pursuit that had been proceeding largely unsuccessfully for the past 50 years) could not be achieved without a basis in unpowered glider flight, in recognising that one must work in harmony with aerodynamic forces. Tragically, one of Lilienthal’s gliders crashed in 1896, and he died after two days in hospital. But his work lived on, and the story of his exploits and his death reached across the world, including to a pair of brothers living in Dayton, Ohio, USA, by the name of Wright. Together, the Wright brothers made huge innovations- they redesigned the aerofoil more efficiently, revolutionised aircraft control using wing warping technology (another idea possibly invented by da Vinci), conducted hours of testing in their own wind tunnel, built dozens of test gliders and brought together the work of Cayley, Lilienthal, da Vinci and a host of other, mostly sadly dead, pioneers of the air.  The Wright brothers are undoubtedly the conquerors of the air, being the first to show that man need not be constrained by either gravity or wind, but can use the air as a medium of travel unlike any other. But the credit is not theirs- it is a credit shared between all those who have lived and died in pursuit of the dream of fling like birds. To quote Lilienthal’s dying words, as he lay crippled by mortal injuries from his crash, ‘Sacrifices must be made’.

The Land of the Red

Nowadays, the country to talk about if you want to be seen as being politically forward-looking is, of course, China. The most populous nation on Earth (containing 1.3 billion souls) with an economy and defence budget second only to the USA in terms of size, it also features a gigantic manufacturing and raw materials extraction industry, the world’s largest standing army and one of only five remaining communist governments. In many ways, this is China’s second boom as a superpower, after its early forays into civilisation and technological innovation around the time of Christ made it the world’s largest economy for most of the intervening time. However, the technological revolution that swept the Western world in the two or three hundred years during and preceding the Industrial Revolution (which, according to QI, was entirely due to the development and use of high-quality glass in Europe, a material almost totally unheard of in China having been invented in Egypt and popularised by the Romans) rather passed China by, leaving it a severely underdeveloped nation by the nineteenth century. After around 100 years of bitter political infighting, during which time the 2000 year old Imperial China was replaced by a republic whose control was fiercely contested between nationalists and communists, the chaos of the Second World War destroyed most of what was left of the system. The Second Sino-Japanese War (as that particular branch of WWII was called) killed around 20 million Chinese civilians, the second biggest loss to a country after the Soviet Union, as a Japanese army fresh from an earlier revolution from Imperial to modern systems went on a rampage of rape, murder and destruction throughout the underdeveloped northern China, where some war leaders still fought with swords. The war also annihilated the nationalists, leaving the communists free to sweep to power after the Japanese surrender and establish the now 63-year old People’s Republic, then lead by former librarian Mao Zedong.

Since then, China has changed almost beyond recognition. During the idolised Mao’s reign, the Chinese population near-doubled in an effort to increase the available worker population, an idea tried far less successfully in other countries around the world with significantly less space to fill. This population was then put to work during Mao’s “Great Leap Forward”, in which he tried to move his country away from its previously agricultural economy and into a more manufacturing-centric system. However, whilst the Chinese government insists to this day that three subsequent years of famine were entirely due to natural disasters such as drought and poor weather, and only killed 15 million people, most external commentators agree that the sudden change in the availability of food thanks to the Great Leap certainly contributed to the death toll estimated to actually be in the region of 20-40 million. Oh, and the whole business was an economic failure, as farmers uneducated in modern manufacturing techniques attempted to produce steel at home, resulting in a net replacement of useful food for useless, low-quality pig iron.

This event in many ways typifies the Chinese way- that if millions of people must suffer in order for things to work out better in the long run and on the numbers sheet, then so be it, partially reflecting the disregard for the value of life historically also common in Japan. China is a country that has said it would, in the event of a nuclear war, consider the death of 90% of their population acceptable losses so long as they won, a country whose main justification for this “Great Leap Forward” was to try and bring about a state of social structure & culture that the government could effectively impose socialism upon, as it tried to do during its “Cultural Revolution” during the mid-sixties. All this served to do was get a lot of people killed, resulted in a decade of absolute chaos, literally destroyed China’s education system and, despite reaffirming Mao’s godlike status (partially thanks to an intensification in the formation of his personality cult), some of his actions rather shamed the governmental high-ups, forcing the party to take the angle that, whilst his guiding thought was of course still the foundation of the People’s Republic and entirely correct in every regard, his actions were somehow separate from that and got rather brushed under the carpet. It did help that, by this point, Mao was now dead and was unlikely to have them all hung for daring to question his actions.

But, despite all this chaos, all the destruction and all the political upheaval (nowadays the government is still liable to arrest anyone who suggests that the Cultural Revolution was a good idea), these things shaped China into the powerhouse it is today. It may have slaughtered millions of people and resolutely not worked for 20 years, but Mao’s focus on a manufacturing economy has now started to bear fruit and give the Chinese economy a stable footing that many countries would dearly love in these days of economic instability. It may have an appalling human rights record and have presided over the large-scale destruction of the Chinese environment, but Chinese communism has allowed for the government to control its labour force and industry effectively, allowing it to escape the worst ravages of the last few economic downturns and preventing internal instability. And the extent to which it has forced itself upon the people of China for decades, forcing them into the party line with an iron fist, has allowed its controls to be gently relaxed in the modern era whilst ensuring the government’s position is secure, to an extent satisfying the criticisms of western commentators. Now, China is rich enough and positioned solidly enough to placate its people, to keep up its education system and build cheap housing for the proletariat. To an accountant, therefore,  this has all worked out in the long run.

But we are not all accountants or economists- we are members of the human race, and there is more for us to consider than just some numbers on a spreadsheet. The Chinese government employs thousands of internet security agents to ensure that ‘dangerous’ ideas are not making their way into the country via the web, performs more executions annually than the rest of the world combined, and still viciously represses every critic of the government and any advocate of a new, more democratic system. China has paid an enormously heavy price for the success it enjoys today. Is that price worth it? Well, the government thinks so… but do you?

Willkommen, 2012…

Hello and happy New Year to whoever may or may not be reading this- for those who are not, please consult reality and try again. I was considering taking this opportunity to look forward and pontificate on what the new year may bring, but I eventually decided that since I don’t have a sodding clue what interesting stuff’s going to happen (bar the Olympics, which everyone knows about already), I have decided instead to give you a list of random facts to give some new stuff to confuse people with in 2012 conversations*. Read and enjoy:

The only sound Seahorses make is a small clicking or popping sound during feeding or courtship

Krispy Kreme make five million doughnuts a day

There were no red colored M&Ms from 1976 to 1987

In Belgium, there is a museum that is just for strawberries

Tomatoes were once referred to as “love apples.” This is because their was a superstition that people would fall in love by eating them

Over 90% of diseases are caused or complicated by stress

An average person uses the toilet 2500 times a year

Approximately 97.35618329% of all statistics are made up

Michael Jordan makes more money from Nike annually than all of the Nike factory workers in Malaysia combined

Pentagon estimates their computer network is hacked about 250,000 times annually

Marilyn Monroe had six toes

On a Canadian two dollar bill, the flag flying over the Parliament building is an American flag

Most heart attacks occur between the hours of 8 and 9 am

There is a town in Norway called “Hell”

The electric chair was invented by a dentist

The word “nerd” was first coined by Dr. Suess in the book “If I Ran to the Zoo.”

For every human in the world there are one million ants

After being picked an orange cannot ripen

There are more pigs than humans in Denmark

Hockey pucks were originally made from frozen cow dung

Karate actually originated in India, but was developed further in China

A group of tigers is called a streak

The average ear grows 0.01 inches in length every year

The same careers advisor dismissed both Mark Knopfler and Alan Shearer’s ambitions (to be a musician and footballer respectively), saying to Knopfler “you’ll never get anywhere playing that kind of stuff”. Shearer broke the world record in transfer fees when he signed for Newcastle, and Knopfler went on to make over £50 million and played at Live Aid

The most exclusive aftershave in the world is named after a Welsh winger and rugby captain

A bank in Paraguay was once held up by two sets of bank robbers simultaneously

A South Korean woman failed her driving test 959 times, and when she finally passed was given a car worth nearly $17,000 by Hyundai, as well as an advertising deal

The biggest defeat in a game of football is held by a team from Madagascar, who lost 149-0 in a match in October 2002

In a 2008 council election in North Dakota, absolutely nobody voted, not even the candidates

A news reporter in Swaziland once spent a month delivering reports from a broom cupboard whilst pretending to be in Baghdad

Elvis Presley once came third in an Elvis Presley impersonator contest in Tennessee

A South African effort to promote condom usage, that included the distribution of a free government condom, ended in failure when it was noticed that the condoms had been stapled to the packaging, puncturing two holes in each of them in the process

*I make no claim to have sourced any of these- the first half come from a friend who used to post these things on Facebook, and the second half are from one of my favourite books- The Ultimate Book of Heroic Failures by Stephen Pile. The ones I have done are just the easiest to paraphrase from the first two chapters- if you want a good source of laughs for the upcoming year, buy yourself a copy and enjoy the rest