Time is an illusion, lunchtime doubly so…

In the dim and distant past, time was, to humankind, a thing and not much more. There was light-time, then there was dark-time, then there was another lot of light-time; during the day we could hunt, fight, eat and try to stay alive, and during the night we could sleep and have sex. However, we also realised that there were some parts of the year with short days and colder night, and others that were warmer, brighter and better for hunting. Being the bright sort, we humans realised that the amount of time it spent in winter, spring, summer and autumn (fall is the WRONG WORD) was about the same each time around, and thought that rather than just waiting for it to warm up every time we could count how long it took for one cycle (or year) so that we could work out when it was going to get warm next year. This enabled us to plan our hunting and farming patterns, and it became recognised that some knowledge of how the year worked was advantageous to a tribe. Eventually, this got so important that people started building monuments to the annual seasonal progression, hence such weird and staggeringly impressive prehistoric engineering achievements as Stonehenge.

However, this basic understanding of the year and the seasons was only one step on the journey, and as we moved from a hunter-gatherer paradigm to more of a civilised existence, we realised the benefits that a complete calendar could offer us, and thus began our still-continuing test to quantify time. Nowadays our understanding of time extends to clocks accurate to the degree of nanoseconds, and an understanding of relativity, but for a long time our greatest quest into the realm of bringing organised time into our lives was the creation of the concept of the wee.

Having seven days of the week is, to begin with, a strange idea; seven is an awkward prime number, and it seems odd that we don’t pick number that is easier to divide and multiply by, like six, eight or even ten, as the basis for our temporal system. Six would seem to make the most sense; most of our months have around 30 days, or 5 six-day weeks, and 365 days a year is only one less than multiple of six, which could surely be some sort of religious symbolism (and there would be an exact multiple on leap years- even better). And it would mean a shorter week, and more time spent on the weekend, which would be really great. But no, we’re stuck with seven, and it’s all the bloody moon’s fault.

Y’see, the sun’s daily cycle is useful for measuring short-term time (night and day), and the earth’s rotation around it provides the crucial yearly change of season. However, the moon’s cycle is 28 days long (fourteen to wax, fourteen to wane, regular as clockwork), providing a nice intermediary time unit with which to divide up the year into a more manageable number of pieces than 365. Thus, we began dividing the year up into ‘moons’ and using them as a convenient reference that we could refer to every night. However, even a moon cycle is a bit long for day-to-day scheduling, and it proved advantageous for our distant ancestors to split it up even further. Unfortunately, 28 is an awkward number to divide into pieces, and its only factors are 1, 2, 4, 7 and 14. An increment of 1 or 2 days is simply too small to be useful, and a 4 day ‘week’ isn’t much better. A 14 day week would hardly be an improvement on 28 for scheduling purposes, so seven is the only number of a practical size for the length of the week. The fact that months are now mostly 30 or 31 days rather than 28 to try and fit the awkward fact that there are 12.36 moon cycles in a year, hasn’t changed matters, so we’re stuck with an awkward 7 day cycle.

However, this wasn’t the end of the issue for the historic time-definers (for want of a better word); there’s not much advantage in defining a seven day week if you can’t then define which day of said week you want the crops to be planted on. Therefore, different days of the week needed names for identification purposes, and since astronomy had already provided our daily, weekly and yearly time structures it made sense to look skyward once again when searching for suitable names. At this time, centuries before the invention of the telescope, we only knew of seven planets, those celestial bodies that could be seen with the naked eye; the sun, the moon (yeah, their definition of ‘planet’ was a bit iffy), Mercury, Venus, Mars, Jupiter and Saturn. It might seem to make sense, with seven planets and seven days of the week, to just name the days after the planets in a random order, but humankind never does things so simply, and the process of picking which day got named after which planet was a complicated one.

In around 1000 BC the Egyptians had decided to divide the daylight into twelve hours (because they knew how to pick a nice, easy-to-divide number), and the Babylonians then took this a stage further by dividing the entire day, including night-time, into 24 hours. The Babylonians were also great astronomers, and had thus discovered the seven visible planets- however, because they were a bit weird, they decided that each planet had its place in a hierarchy, and that this hierarchy was dictated by which planet took the longest to complete its cycle and return to the same point in the sky. This order was, for the record, Saturn (29 years), Jupiter (12 years), Mars (687 days), Sun (365 days), Venus (225 days), Mercury (88 days) and Moon (28 days). So, did they name the days after the planets in this order? Of course not, that would be far too simple; instead, they decided to start naming the hours of the day after the planets (I did say they were a bit weird) in that order, going back to Saturn when they got to the Moon.

However, 24 hours does not divide nicely by seven planets, so the planet after which the first hour of the day was named changed each day. So, the first hour of the first day of the week was named after Saturn, the first hour of the second day after the Sun, and so on. Since the list repeated itself each week, the Babylonians decided to name each day after the planet that the first hour of each day was named, so we got Saturnday, Sunday, Moonday, Marsday, Mercuryday, Jupiterday and Venusday.

Now, you may have noticed that these are not the days of the week we English speakers are exactly used to, and for that we can blame the Vikings. The planetary method for naming the days of the week was brought to Britain by the Romans, and when they left the Britons held on to the names. However, Britain then spent the next 7 centuries getting repeatedly invaded and conquered by various foreigners, and for most of that time it was the Germanic Vikings and Saxons who fought over the country. Both groups worshipped the same gods, those of Norse mythology (so Thor, Odin and so on), and one of the practices they introduced was to replace the names of four days of the week with those of four of their gods; Tyr’sday, Woden’sday (Woden was the Saxon word for Odin), Thor’sday and Frig’sday replaced Marsday, Mercuryday, Jupiterday and Venusday in England, and soon the fluctuating nature of language renamed the days of the week Saturday, Sunday, Monday, Tuesday, Wednesday, Thursday and Friday.

However, the old planetary names remained in the romance languages (the Spanish translations of the days Tuesday to Friday are Mardi, Mercredi, Jeudi and Vendredi), with one small exception. When the Roman Empire went Christian in the fourth century, the ten commandments dictated they remember the Sabbath day; but, to avoid copying the Jews (whose Sabbath was on Saturday), they chose to make Sunday the Sabbath day. It is for this reason that Monday, the first day of the working week after one’s day of rest, became the start of the week, taking over from the Babylonian’s choice of Saturday, but close to Rome they went one stage further and renamed Sunday ‘Deus Dominici’, or Day Of The Lord. The practice didn’t catch on in Britain, thousands of miles from Rome, but the modern day Spanish, French and Italian words for Sunday are domingo, dimanche and domenica respectively, all of which are locally corrupted forms of ‘Deus Dominici’.

This is one of those posts that doesn’t have a natural conclusion, or even much of a point to it. But hey; I didn’t start writing this because I wanted to make a point, but more to share the kind of stuff I find slightly interesting. Sorry if you didn’t.

Why the chubs?

My last post dealt with the thorny issue of obesity, both it’s increasing presence in our everyday lives, and what for me is the underlying reason behind the stats that back up media scare stories concerning ‘the obesity epidemic’- the rise in size of the ‘average’ person over the last few decades. The precise causes of this trend can be put down to a whole host of societal factors within our modern age, but that story is boring as hell and has been repeated countless times by commenters far more adept in this field than me. Instead, today I wish present the case for modern-day obesity as a problem concerning the fundamental biology of a human being.

We, and our dim and distant ancestors of the scaly/furry variety, have spent the last few million years living wild; hunting, fighting and generally acting much like any other evolutionary pathway. Thus, we can learn a lot about our own inbuilt biology and instincts by studying the behaviour of animals currently alive today, and when we do so, several interesting animal eating habits become apparent. As anyone who has tried it as a child can attest (and I speak from personal experience), grass is not good stuff to eat. It’s tough, it takes a lot of chewing and processing (many herbivores have multiple stomachs to make sure they squeeze the maximum nutritional value out of their food), and there really isn’t much of it to power a fully-functional being. As such, grazers on grass and other such tough plant matter (such as leaves) will spend most of their lives doing nothing but guzzle the stuff, trying to get as much as possible through their system. Other animals will favour food with a higher nutritional content, such as fruits, tubers or, in many cases, meat, but these frequently present issues. Fruits are highly seasonal and rarely available in a large enough volume to support a large population, as well as being quite hard to get a lot of down; plants try to ‘design’ fruits so that each visitor takes only a few at a time, so as best to spread their seeds far and wide, and as such there are few animals that can sustain themselves on such a diet.  Other food such as tubers or nuts are hard to get at, needing to be dug up or broken in highly energy-consuming activities, whilst meat has the annoying habit of running away or fighting back whenever you try to get at it. As anyone who watches nature documentaries will attest, most large predators will only eat once every few days (admittedly rather heavily).

The unifying factor of all of this is that food is, in the wild, highly energy- and time-consuming to get hold of and consume, since every source of it guards its prize jealously. Therefore, any animal that wants to survive in this tough world must be near-constantly in pursuit of food simply to fulfil all of its life functions, and this is characterised by being perpetually hungry. Hunger is a body’s way of telling us that we should get more food, and in the wild this constant desire for more is kept in check by the difficulty that getting hold of it entails. Similarly, animal bodies try to assuage this desire by being lazy; if something isn’t necessary, then there’s no point wasting valuable energy going after it (since this will mean spending more time going after food to replace lost energy.)

However, in recent history (and a spectacularly short period of time from evolution’s point of view), one particular species called homo sapiens came up with this great idea called civilisation, which basically entailed the pooling and sharing of skill and resources in order to best benefit everyone as a whole. As an evolutionary success story, this is right up there with developing multicellular body structures in terms of being awesome, and it has enabled us humans to live far more comfortable lives than our ancestors did, with correspondingly far greater access to food. This has proved particularly true over the last two centuries, as technological advances in a more democratic society have improved the everyman’s access to food and comfortable living to a truly astounding degree. Unfortunately (from the point of view of our waistline) the instincts of our bodies haven’t quite caught up to the idea that when we want/need food, we can just get food, without all that inconvenient running around after it to get in the way. Not only that, but a lack of pack hierarchy combined with this increased availability means that we can stock up on food until we have eaten our absolute fill if so we wish; the difference between ‘satiated’ and ‘stuffed’ can work out as well over 1000 calories per meal, and over a long period of time it only takes a little more than we should be having every day to start packing on the pounds. Combine that with our natural predilection to laziness meaning that we don’t naturally think of going out for some exercise as fun purely for its own sake, and the fact that we no longer burn calories chasing our food, or in the muscles we build up from said chasing, and we find ourselves consuming a lot more calories than we really should be.

Not only that, but during this time we have also got into the habit of spending a lot of time worrying over the taste and texture of our food. This means that, unlike our ancestors who were just fine with simply jumping on a squirrel and devouring the thing, we have to go through the whole rigmarole of getting stuff out of the fridge, spending two hours slaving away in a kitchen and attempting to cook something vaguely resembling tasty. This wait is not something out bodies enjoy very much, meaning we often turn to ‘quick fixes’ when in need of food; stuff like bread, pasta or ready meals. Whilst we all know how much crap goes into ready meals (which should, as a rule, never be bought by anyone who cares even in the slightest about their health; salt content of those things is insane) and other such ‘quick fixes’, fewer people are aware of the impact a high intake of whole grains can have on our bodies. Stuff like bread and rice only started being eaten by humans a few thousand years ago, as we discovered the benefits of farming and cooking, and whilst they are undoubtedly a good food source (and are very, very difficult to cut from one’s diet whilst still remaining healthy) our bodies have simply not had enough time, evolutionarily speaking, to get used to them. This means they have a tendency to not make us feel as full as their calorie content should suggest, thus meaning that we eat more than our body in fact needs (if you want to feel full whilst not taking in so many calories, protein is the way to go; meat, fish and dairy are great for this).

This is all rather academic, but what does it mean for you if you want to lose a bit of weight? I am no expert on this, but then again neither are most of the people acting as self-proclaimed nutritionists in the general media, and anyway, I don’t have any better ideas for posts. So, look at my next post for my, admittedly basic, advice for anyone trying to make themselves that little bit healthier, especially if you’re trying to work of a few of the pounds built up over this festive season.