‘Fish’ is one of my favourite words. Having only a single syllable means it can be dropped into conversation without a second thought, thus enabling one to cause maximum confusion with minimal time spent considering one’s move, which often rather spoils the moment. The very… forward nature of the word also suits this function- the very bluntness of it, its definitive end and beginning with little in the way of middle to get distracting, almost forces it to take centre stage in any statement, whether alone or accompanied by other words, demanding it be said loud and proud without a trace of fear or embarrassment. It also helps that the word is very rarely an appropriate response to anything, enhancing its inherent weirdness.

Ahem. Sorry about that.

However, fish themselves are very interesting in their own right; and yes, I am about to attempt an overall summary of one of the largest groups in the animal kingdom in less than 1000 words.  For one thing, every single vertebrate on the planet is descended from them; in 1999 a fossil less than 3cm long and 524 million years old was discovered in China with a single ‘stick’ of rigid material, probably cartilage, running down the length of its body. It may be the only example ever discovered of Myllokunmingia fengjiaoa (awesome name), but that tiny little fossil has proved to be among the most significant ever found. Although not proven, that little bit of cartilage is thought to be the first ever backbone, making Myllokunmingia the world’s first fish and the direct ancestor of everything from you to the pigeon outside your window. It’s quite a humbling thought.

This incredible age of fish as a group, which in turn means there are very few specimens of early fish, has meant that piscine evolution is not studied as a single science; the three different classes of fish (bony, cartilaginous and jawless, representing the likes of cod, sharks and hagfish respectively- a fourth class of armoured fish died out some 360 million years ago) all split into separate entities long before any other group of vertebrates began to evolve, and all modern land-based vertebrates (tetrapods, meaning four-limbed) are direct descendants of the bony fish, the most successful of the three groups. This has two interesting side-effects; firstly that a salmon is more closely related to you than to a shark, and secondly (for precisely this reason) that some argue there is no such thing as a fish. The term ‘fish’ was introduced as a coverall term to everything whose lack of weight-bearing limbs confines them to the water before evolutionary biology had really got going, and technically the like of sharks and lamprey should each get a name to themselves- but it appears we’re stuck with fish, so any grumpy biologists are just going to have to suck it.

The reason for this early designation of fish in our language is almost certainly culinary in origin, for this is the main reason we ever came, and indeed continue to come, into contact with them at all. Fish have been an available, nutritious and relatively simple to catch food source for humans for many a millennia, but a mixture of their somewhat limited size, the fact that they can’t be farmed and the fact that bacon tastes damn good meant they are considered by some, particularly in the west (fish has always enjoyed far greater popularity in far eastern cultures), to the poor cousins to ‘proper meat’ like pork or beef. Indeed, many vegetarians (including me; it’s how I was brought up) will eschew meat but quite happily eat fish in large quantities, usually using the logic that fish are so damn stupid they’re almost vegetables anyway. Vegetarians were not, however, the main reason for fish’s survival as a common food for everyone, including those living far inland, in Europe- for that we can thank the Church. Somewhere in the dim and distant past, the Catholic Church decreed that one should not eat red meat on the Sabbath day- but that fish was permitted. This kept fish a common dish throughout Europe, as well as encouraging the rampant rule bending that always accompanies any inconvenient law; beaver were hunted almost to extinction in Europe by being classed as fish under this rule. It was also this ruling that lead to lamprey (a type of jawless fish that looks like a cross between a sea snake and a leech) becoming a delicacy among the crowned heads of Europe, and Henry I of England (third son of William the Conqueror, in case you wanted to know) is reported to have died from eating too many of the things.

The feature most characteristic of fish is, of course, gills, even though not all fish have them and many other aquatic species do (albeit less obviously). To many, how gills work is an absolute mystery, but then again how many of you can say, when it comes right down to the science of the gas exchange process, how your lungs work? In both systems, the basic principle is the same; very small, thin blood vessels within the structure concerned are small and permeable enough to allow gas molecules to move across the gap from one side of the blood vessel’s wall to the other, allowing carbon dioxide built up from moving and generally being alive to move out of the bloodstream and fresh oxygen to move in. The only real difference concerns structure; the lungs consist of a complex, intertwining labyrinth of air spaces of various size with blood vessels spread over the surface and designed to filter oxygen from the air, whilst gills basically string the blood vessels up along a series of sticks and hold them in the path of flowing water to absorb the oxygen dissolved within it- gills are usually located such that water flows through the mouth and out via the gills as the fish swims forward. In order to ensure a constant supply of oxygen-rich water is flowing over the gills, most fish must keep swimming constantly or else the water beside their gills would begin to stagnate- but some species’, such as nurse sharks, are able to pump water over their gills manually, allowing them to lie still and allow them to do… sharky things. Interestingly, the reason gills won’t work on land isn’t simply that they aren’t designed to filter oxygen from the air; a major contributory factor is the fact that, without the surrounding water to support them, the structure of the gills is prone to collapse, causing parts of it cease to be able to function as a gas exchange mechanism.

Well, that was a nice ramble. What’s up next time, I wonder…


Keeping it Cool

We humans are unique in so many ways, but perhaps our mastery of the systems used in getting food into our mouths is the most remarkable. From our humble hunter-gatherer beginnings, in which we behaved much as any other animals, we have discovered agriculture, domesticated animals, learned to harvest milk and eggs and are nowadays even capable of growing a steak from just a few cells (we’ll temporarily gloss over the cost and taste of the finished product). However, arguably just as important as these advancements has been our ability to store food, allowing us to survive the harshest of winters and conditions in numbers few other animals could hope to match.

Our methods of food storage have varied widely over the years; beyond the simple tactic of ‘keep your food somewhere basically dry and clean’, in the last few decades we’ve moved on from our old favourites to explore as wide a variety of solutions as chemical preservatives and freeze drying. However, today I wish to explore an older, yet arguably far more interesting, method that remains our current favourite method of home food preservation: that of refrigeration.

Refrigeration, or the highly technical art of ‘making food colder so bad things can’t survive’, is an ancient idea; ice houses have been found in Iran dating from 1700BC, and were in use in both China and the Roman Empire throughout both culture’s long histories. Since making their own ice was impossible using the technology of the time, these ancient civilisations simply moved existing ice to a designated place where it with useful and came up with ingenious ways to make sure it stayed cold throughout the long summers; these great buildings would have immensely thick walls and were then packed with straw or sawdust to prevent the air circulating, thus helping to maintain their temperature. Thanks to their thick walls, ice houses were necessarily vast structures, acting rather like communal refrigerators for a local lord and his community and capable of holding up to thirty thousand tons of food.

In other countries, where snow and ice was harder to reliably come by (even in winter), refrigeration didn’t really catch on and people stuck with salting their food. However, because this a) made a lot of food taste disgusting and b) meant you still had to drink warm beer, by the seventeenth century it became relatively common for the rich across Europe to import ice (at vast expense) to their own personal ice houses, allowing them to serve fancy drinks at parties and the like and enjoy an unsalted pork roast in February. Ice was a symbol of luxury and status, which is presumably one of the reasons why ice sculptures are even today considered the pinnacle of class and fine living (that and the fact that they’re really, really cool). During the Georgian and Victorian eras, it was common practice for families going out for a day’s jolly (particularly in the colonies) to take an ice box of food with them, and there were even ice shops where the rich would go to buy high-quality, exceptionally clear ice for whatever party they happened to be hosting- but, by the end of the century that business would be long bust.

Y’see, in 1805 a man named Oliver Evans, who would later become known as ‘the father of refrigeration’, invented a device called the vapour-compression refrigeration machine. This is, basically, a series of tubes containing a stable coolant; the coolant is first compressed, then condenses (causing it to lose the heat it’s picked up- this is the vapour-compression bit), before going back inside and evaporating again thanks to a mixture of a pressure change and temperature change, thus allowing it to pick up heat. This rather convoluted evaporation/condensation procedure (first investigated by Benjamin Franklin and a chemistry professor called John Hadley half a century earlier) wasn’t actually the preferred solution for a few decades, since the earliest devices built were ‘compression-compression’ systems that used air as a coolant and were thus only able to change its pressure rather than get it to liquefy. Regardless, it was soon realised the vapour-compression system allows a device to more efficiently control the transfer of heat from in to out rather than vice versa, and is now pretty much universally used in modern day ‘heat pumps’ of all sorts.. Incidentally, heat pumps are among the most efficient systems ever devised for heating/cooling a space, and nowadays they are increasingly used (in the opposite direction, of course), to heat houses, as they use far less energy than conventional methods of heating.

But anyway; back to fridges. Evans’ design never actually built a prototype of his design, but it was picked up on and revised several times over the next seventy-odd years until the design was sufficiently advanced to be used in commercial ice makers, putting the old ice ‘manufacturers’ (who simply got their ice out of a convenient mountain lake or glacier) out of business, and by the early 20th century the devices got so good that they were able to liquefy air.

Surprisingly, it wasn’t until after this point that the modern science of refrigeration began to make it into our homes. It took until 1913 for a patent to be issued for a domestic refrigerator, and even that was just a way of keeping an existing ice box cool; it didn’t actually cool the interior of the fridge down. However, the following year the USA got the awesomely-named Kelvinator refrigerator, the first properly practical domestic fridge that held some 80% of the market by 1923. During the economic boom of the 1920s, fridges were among the many devices whose popularity exploded, and they gradually became bigger, sleeker, more practical and more efficient in the process. By the 1930s they’d even managed to find a coolant that wasn’t highly corrosive or toxic, which all seemed terribly fantastic in the days before most people knew what ‘CFCs’ and ‘the ozone layer’ were. By 1940 the idea of attaching a freezer (at a sub-zero temperature) to one’s fridge (which usually operates at about 3ºC) became commonplace, and since then most of the advancements in the field of domestic refrigeration have been limited to making fridges bigger, easier to clean (particularly with the introduction of injection-moulded plastic components), more energy-efficient and more of a middle-class fashion statement.

However, this does not mean that the science of refrigeration is slowing down: recently, a British company called Reaction Engines Ltd. demonstrated their prototype air-breathing rocket engine, whose key feature was a revolutionary new type of heat exchanger. Despite a design utilising pretty much exactly the same science you’d find at the back of your fridge at home, this heat exchange is capable of dropping the temperature of air from several hundred degrees to -150ºC; in a hundredth of a second. That change in heat energy represents roughly the power output of a medium sized power station from a device that weighs significantly less than a hatchback. I would love to explain all the mechanics of this technology to you, but right now I wish for little more than to sit back and marvel.

The Alternative Oven

During the Second World War, the RAF pioneered the use of radar to detect the presence of the incoming Luftwaffe raids. One of the key pieces of equipment used in the construction of the radars was called a magnetron, which uses a magnetic field to propel high-speed electrons and generate the kind of high-powered radio waves needed for such a technology to be successful over long distances. After the war was over, the British government felt it could share such technology with its American allies, and so granted permission for Raytheon, a private American enterprise, to produce them. Whilst experimenting with such a radar set in 1945, a Raytheon engineer called Percy Spencer reached to the chocolate bar in his pocket; and discovered it had melted. He later realised that the electromagnetic radiation generated by the radar set had been the cause of this heating effect, and thought that such technology could be put to a different, non-military use- and so the microwave oven was born.

Since then, the microwave has become the epitome of western capitalism’s golden age; the near-ubiquitous kitchen gadget, usually in the traditional white plastic casing, designed to make certain specific aspects of a process already technically performed  by another appliance (the oven) that bit faster and more convenient. As such, it has garnered its fair share of hate over the years, shunned by serious foodies as a taste-ruining harbinger of doom to one’s gastric juices that wouldn’t be seen dead in any serious kitchen. The simplicity of the microwaving process (especially given that there is frequently no need for a pot or container) has also lead to the rise of microwavable meals, designed to take the concept of ultra-simple cooking to its extreme by creating an entire meal  from a few minutes in the microwave. However, as everyone who’s every attempted a bit of home cooking will know, such process does not naturally occur quite so easily and thus these ready meals generally require large quantities of what is technically known as ‘crap’ for them to function as meals. This low quality food has become distinctly associated with the microwave itself, further enhancing its image as a tool for the lazy and the kind of societal dregs that the media like to portray in scare statistics.

In fairness, this is hardly the device’s fault, and it is a pretty awesome one. Microwave ovens work thanks to the polarity of water molecules; they consist of one positively charged end (where the hydrogen part of H2O is) and a negatively charged end (where the electron-rich oxygen bit is). Also charged are electromagnetic waves, such as the microwaves after which the oven takes its name, and such waves (being as they are, y’know, waves) also oscillate (aka ‘wobble) back and forth. This charge wobbling back and forth causes the water molecules (technically it works with other polarised molecules too, but there are very few other liquids consisting of polarised molecules that one encounters in cookery; this is why microwaves can heat up stuff without water in, but don’t do it very well) to oscillate too. This oscillation means that they gain kinetic energy from the microwave radiation; it just so happens that the frequency of the microwave radiation is chosen so that it closely matches the resonant frequency of the oscillation of the water molecules, meaning this energy transfer is very efficient*; a microwave works out as a bit over 60% efficient (most of the energy being lost in the aforementioned magnetron used to generate the microwaves), which is exceptional compared to a kettle’s level of around 10%. The efficiency of an oven really depends on the meal and how it’s being used, but for small meals or for reheating cold (although not frozen, since ice molecules aren’t free to vibrate as much as liquid water) food the microwave is definitely the better choice. It helps even more that microwaves are really bad at penetrating the metal & glass walls of a microwave, meaning they tend to bounce off until they hit the food and that very little of the energy gets lost to the surroundings once it’s been emitted. However, if nothing is placed in the microwave then these waves are not ‘used up’ in heating food and tend to end up back in the microwave emitter, causing it to burn out and doing the device some serious damage.

*I have heard it said that this is in fact a myth, and that microwaves are in fact selected to be slightly off the resonant frequency range so that they don’t end up heating the food too violently. I can’t really cite my sources on this one nor explain why it makes sense.

This use of microwave radiation to heat food incurs some rather interesting side-effects; up first is the oft-cited myth that microwaves cook food ‘from the inside out’. This isn’t actually true, for although the inside of a piece of food may be slightly more insulated than the outside the microwaves should transfer energy to all of the food at a roughly equal rate; if anything the outside will get more heating since it is hit first by the microwaves. This effect is observed thanks to the chemical makeup of a lot of the food put in a microwave, which generally have the majority of their water content beneath the surface; this makes the surface relatively cool and crusty, with little water to heat it up, and the inside scaldingly hot. The use of high-power microwaves also means that just about everyone in the country has in their home a death ray capable of quite literally boiling someone’s brain if the rays were directed towards them (hence why dismantling a microwave is semi-illegal as I understand it), but it also means that everyone has ample opportunity to, so long as they don’t intend to use the microwave again afterwards  and have access to a fire extinguisher, do some seriously cool stuff with it. Note that this is both dangerous, rather stupid and liable to get you into some quite weird stuff, nothing is a more sure fire indicator of a scientific mind than an instinct to go ‘what happens when…’ and look at the powerful EM radiation emitter sitting in your kitchen. For the record, I did not say that this was a good idea…

Poverty Changes

£14,000 is quite a large amount of money. Enough for 70,000 Freddos, a decade’s worth of holidays, two new Nissan Pixo’s, several thousand potatoes or a gold standard racing pigeon. However, if you’re trying to live off just that amount in modern Britain, it quickly seems quite a lot smaller. Half of that could easily disappear on rent, whilst the average British family will spend a further £4,000 on food (significantly greater than the European average, for one reason or another). Then we must factor in tax, work-related expenses, various repair bills, a TV license, utility & heating bills, petrol money and other transport expenses, and it quickly becomes apparent that trying to live on this amount will require some careful budgeting. Still, not to worry too much though; it’s certainly possible to keep the body and soul of a medium sized family together on £14k a year, if not absolutely comfortably, and in any case 70% of British families have an annual income in excess of this amount. It might not be a vast amount to live on, but it should be about enough.

However, there’s a reason I quoted £14,000 specifically in the figure above, because I recently saw another statistic saying that if one’s income is above 14 grand a year, you are one of the top 4% richest people on planet Earth. Or, to put it another way, if you were on that income, and were then to select somebody totally at random from our species, then 24 times out of 25 you would be richer than them.

Now, this slightly shocking fact, as well as being a timely reminder as to the prevalence of poverty amongst fellow members of our species, to me raises an interesting question; if £14,000 is only just about enough to let one’s life operate properly in modern Britain, how on earth does the vast majority of the world manage to survive at all on significantly less than this? More than 70% of the Chinese population (in 2008, admittedly; the rate of Chinese poverty is decreasing at a staggering rate thanks to its booming economy) live on less than $5 a day, and 35 years ago more than 80% were considered to be in absolute poverty. How does this work? How does most of the rest of the world physically survive?

The obvious starting point is the one stating that much of it barely does. Despite the last few decades of massive improvement in the living standards and poverty levels in the world in general,  the World Bank estimates that some 20% of the world’s populace is living below the absolute poverty line of surviving on less than $1.50 per person per day, or £365 a year (down from around 45% in the early 1980s- Bob Geldof’s message has packed a powerful punch). This is the generally accepted marker for being less than what a person can physically keep body and soul together on, and having such a huge proportion of people living below this marker tends to drag down the global average. Poverty is something that the last quarter of the century has seen a definitive effort on the part of humanity to reduce, but it’s still a truly vast issue across the globe.

However, the main contributing factor to me behind how a seemingly meagre amount of money in the first world would be considered bountiful wealth in the third is simply down to how economics works. We in the west are currently enjoying the fruits of two centuries of free-market capitalism, which has fundamentally changed the way our civilisation functions. When we as a race first came up with the concept of civilisation, of pooling and exchanging skills and resources for the betterment of the collective, this was largely confined to the local community, or at least to the small-scale. Farmers provided for those living in the surrounding twenty miles or so, as did brewers, hunters, and all other such ‘small businessmen’, as they would be called today. The concept of a country provided security from invasion and legal support on a larger scale, but that was about it; any international trade was generally conducted between kings and noblemen, and was very much small scale.

However, since the days of the British Empire and the Industrial Revolution, business has got steadily bigger and bigger. It started out with international trade between the colonies, and the rich untapped resources the European imperial powers found there, moved on to the industrial scale manufacture of goods, and then the high-intensity sale of consumer products to the general population. Now we have vast multinational companies organising long, exhaustive chains of supply, manufacture and retail, and our society has become firmly rooted in this intense selling international economy. Without constantly selling vast quantities of stuff to one another, the western world as we know it simply would not exist.

This process causes many side effects, but one is of particular interest; everything becomes more expensive. To summarise very simply, the basic principle of capitalism involves workers putting in work and skill to increase the value of something; that something then gets sold, and the worker then gets some of the difference between cost of materials and cost of sale as a reward for their effort. For this to work, then one’s reward for putting in your effort must be enough to purchase the stuff needed to keep you alive; capitalism rests on the principle of our bodies being X% efficient at turning the food we eat into the energy we can use to work. If business is successful, then the workers of a company (here the term ‘workers’ covers everyone from factory floor to management) will gain money in the long term, enabling them to spend more money. This means that the market increases in size, and people can either sell more goods or start selling them for a higher price, so goods become worth more, so the people making those goods start getting more money, and so on.

The net result of this is that in an ‘expensive’ economy, everyone has a relatively high income and high expenditure, because all goods, taxes, land, utilities etc. cost quite a lot; but, for all practical purposes, this results in a remarkably similar situation to a ‘cheap’ economy, where the full force of western capitalism hasn’t quite taken hold yet- for, whilst the people residing there have less money, the stuff that is there costs less having not been through the corporation wringer. So, why would we find it tricky to live on less money than the top 4% of the world’s population? Blame the Industrial Revolution.

Goodwill to all men

NOTE: This post was meant to go up on Christmas Eve, but WordPress clearly broke on me so apparently you get it now instead- sorry. Ah well, might as well put it up anyway…


Ah, Christmas; such an interesting time of year. The season of plenty, the season of spending too much, the season of eating too much, the season of decisions we later regret and those moments we always remember. The season where some families will go without food to keep the magic alive for their children, the season where some new feuds are born but old ones are set aside, and the season where goodwill to all men (and women) becomes a key focus of our attention.

When I was young, I always had a problem with this. I had similar issues with Mother’s Day, and Father’s Day even more so (I don’t know how I came to know that it was an entirely commercial invention, but there you go), and whilst Christmas was awesome enough that I wasn’t going to ruin it by seasonal complaints, one thing always bugged me about ‘the season of goodwill’. Namely, why can’t we just be nice to each other all the time, rather than just for a few weeks of the year?

A cynic might say we get all the goodwill out of our systems over Christmas in preparation for being miserable bastards for the rest of the year, but cynicism is unhealthy and in any case, I try to keep it out of my bloggy adventures. Plus, we are capable of doing nice stuff for the rest of the year, even if we don’t do so much as some might think we should, and humans never cease to be awesome beings when they put their mind to it. No, it’s not that we give up being nice for the rest of the year, but more that we are quite clearly eminently able of being more nice but not, seemingly, all the time.

Goodwill to our fellow man is not the only seasonal occurrence that seems more prevalent over the festive period for no obvious reason; many of our Christmas traditions, both old and modern, follow a similar thread. Turkey, for instance; whilst it’s never been Christmas fare in my household for various reasons, I know enough people for whom a turkey dinner plus trimmings is the festive standard to know that these same people never have the bird at any other time of the year (I know you Americans have it on Thanksgiving, but I don’t know enough about how all that works to comment). I saw a comment online a couple of weeks ago about eggnog (another seemingly American-specific thing), and mentioning how this apparently awesome stuff (never tried it myself, so again can’t comment) is never available at any other time of the year. A response soon followed courtesy of a shop worker, who said there’s always a supply of it tucked away somewhere throughout the year in the shop where he worked, but that nobody ever bought it outside of December.

We should remember that there is something of a fine line to tread when we discuss these ideas; there are a lot of things that only occur at Christmas time (the giving of gifts, decorations, the tree and so on) that don’t need any such explanation because they are solely associated with the season. If one were to put tinsel up in June, then you might be thought a bit odd for your apparent celebration of Christmas in midsummer; tinsel is not associated with anything other than festive celebration, so in any other context it’s just weird.  This is particularly true given that tinsel and other such decorations are just that; decorations, with no purpose outside of festive celebration. Similarly, whilst gift-giving is appreciated throughout the rest of year (although it’s best to do so in moderation), going to all the trouble of thinking, deliberating, wrapping secretively and making a big fanfare over it is only associated with special occasions (Christmases or birthdays). Stuff like turkey and eggnog can probably be classified as somewhere in the middle; very much associated with the Christmas period, but still separate from it and capable for being consumed at other times of the year.

The concept of goodwill and being nice to people is a little different; not just something that is possible throughout the rest of the year, but something actively encouraged as being a commendable trait, so the excuse of ‘it’s just a feature of the season’ doesn’t really cut it in this context. Some might say that quite a lot of the happiness exuded at Christmastime is somewhat forced, or at the very least tiring, as anyone who’s looked at the gaunt face between the smiling facade of a Christmas day Mum can tell. Therefore, it could be argued that Christmas good cheer is simply too much work to keep up for the rest of the year, and that if we were forced to keep our smiley faces on we would either snap or collapse in exhaustion before long. Others might say that keeping good cheer confined to one portion of the year makes it that much more fun and special when it comes round each year, but to me the reason is slightly more… mathematical.

Human beings are competitive, ambitious creatures, perpetually seeking to succeed and triumph over the odds. Invariably, this frequently means triumphing over other people too, and this is not a situation that lends itself to being dedicated to being nice to one another; competition and the strive to succeed may be key features behind human and personal success, but they do not lend themselves to being nice to one another. Not infrequently, such competition requires us to deliberately take the not-nice option, as dicking on our competition often provides the best way to compete with them; or at the very least, we sometimes need to be harsh bastards to make sure stuff gets done at all. This concept is known in philosophy as the prisoner’s dilemma, which I should get round to doing a post on one of these days.

However at Christmas time achievement becomes of secondary importance to enjoyment; to spending time with friends and family, and to just enjoying the company of your nearest and dearest. Therefore, comparatively little actually gets done over the Christmas period (at least from an economist’s point of view), and so the advantage presented by mild dickishness to some others for the rest of the year disappears. Everything in life becomes reduced down to a state where being nice to everyone around us best serves our purpose of making our environment a fun, comfortable place to be. At Christmas time, we have no reason to be nasty, and every reason to be nice; and for that reason alone, Christmas is a wonderful thing. Merry Christmas, everybody.

The Land of the Red

Nowadays, the country to talk about if you want to be seen as being politically forward-looking is, of course, China. The most populous nation on Earth (containing 1.3 billion souls) with an economy and defence budget second only to the USA in terms of size, it also features a gigantic manufacturing and raw materials extraction industry, the world’s largest standing army and one of only five remaining communist governments. In many ways, this is China’s second boom as a superpower, after its early forays into civilisation and technological innovation around the time of Christ made it the world’s largest economy for most of the intervening time. However, the technological revolution that swept the Western world in the two or three hundred years during and preceding the Industrial Revolution (which, according to QI, was entirely due to the development and use of high-quality glass in Europe, a material almost totally unheard of in China having been invented in Egypt and popularised by the Romans) rather passed China by, leaving it a severely underdeveloped nation by the nineteenth century. After around 100 years of bitter political infighting, during which time the 2000 year old Imperial China was replaced by a republic whose control was fiercely contested between nationalists and communists, the chaos of the Second World War destroyed most of what was left of the system. The Second Sino-Japanese War (as that particular branch of WWII was called) killed around 20 million Chinese civilians, the second biggest loss to a country after the Soviet Union, as a Japanese army fresh from an earlier revolution from Imperial to modern systems went on a rampage of rape, murder and destruction throughout the underdeveloped northern China, where some war leaders still fought with swords. The war also annihilated the nationalists, leaving the communists free to sweep to power after the Japanese surrender and establish the now 63-year old People’s Republic, then lead by former librarian Mao Zedong.

Since then, China has changed almost beyond recognition. During the idolised Mao’s reign, the Chinese population near-doubled in an effort to increase the available worker population, an idea tried far less successfully in other countries around the world with significantly less space to fill. This population was then put to work during Mao’s “Great Leap Forward”, in which he tried to move his country away from its previously agricultural economy and into a more manufacturing-centric system. However, whilst the Chinese government insists to this day that three subsequent years of famine were entirely due to natural disasters such as drought and poor weather, and only killed 15 million people, most external commentators agree that the sudden change in the availability of food thanks to the Great Leap certainly contributed to the death toll estimated to actually be in the region of 20-40 million. Oh, and the whole business was an economic failure, as farmers uneducated in modern manufacturing techniques attempted to produce steel at home, resulting in a net replacement of useful food for useless, low-quality pig iron.

This event in many ways typifies the Chinese way- that if millions of people must suffer in order for things to work out better in the long run and on the numbers sheet, then so be it, partially reflecting the disregard for the value of life historically also common in Japan. China is a country that has said it would, in the event of a nuclear war, consider the death of 90% of their population acceptable losses so long as they won, a country whose main justification for this “Great Leap Forward” was to try and bring about a state of social structure & culture that the government could effectively impose socialism upon, as it tried to do during its “Cultural Revolution” during the mid-sixties. All this served to do was get a lot of people killed, resulted in a decade of absolute chaos, literally destroyed China’s education system and, despite reaffirming Mao’s godlike status (partially thanks to an intensification in the formation of his personality cult), some of his actions rather shamed the governmental high-ups, forcing the party to take the angle that, whilst his guiding thought was of course still the foundation of the People’s Republic and entirely correct in every regard, his actions were somehow separate from that and got rather brushed under the carpet. It did help that, by this point, Mao was now dead and was unlikely to have them all hung for daring to question his actions.

But, despite all this chaos, all the destruction and all the political upheaval (nowadays the government is still liable to arrest anyone who suggests that the Cultural Revolution was a good idea), these things shaped China into the powerhouse it is today. It may have slaughtered millions of people and resolutely not worked for 20 years, but Mao’s focus on a manufacturing economy has now started to bear fruit and give the Chinese economy a stable footing that many countries would dearly love in these days of economic instability. It may have an appalling human rights record and have presided over the large-scale destruction of the Chinese environment, but Chinese communism has allowed for the government to control its labour force and industry effectively, allowing it to escape the worst ravages of the last few economic downturns and preventing internal instability. And the extent to which it has forced itself upon the people of China for decades, forcing them into the party line with an iron fist, has allowed its controls to be gently relaxed in the modern era whilst ensuring the government’s position is secure, to an extent satisfying the criticisms of western commentators. Now, China is rich enough and positioned solidly enough to placate its people, to keep up its education system and build cheap housing for the proletariat. To an accountant, therefore,  this has all worked out in the long run.

But we are not all accountants or economists- we are members of the human race, and there is more for us to consider than just some numbers on a spreadsheet. The Chinese government employs thousands of internet security agents to ensure that ‘dangerous’ ideas are not making their way into the country via the web, performs more executions annually than the rest of the world combined, and still viciously represses every critic of the government and any advocate of a new, more democratic system. China has paid an enormously heavy price for the success it enjoys today. Is that price worth it? Well, the government thinks so… but do you?