The Interesting Instrument

Music has been called the greatest thing that humans do; some are of the opinion that it, even if only in the form of songs sung around the campfire, it is the oldest example of human art. However, whilst a huge amount of music’s effect and impact can be put down to the way it is interpreted by our ears and brain (I once listened to a song comprised entirely of various elements of urban sound, each individually recorded by separate microphones and each made louder or softer in order to create a tune), to create new music and allow ourselves true creative freedom over the sounds we make requires us to make and play instruments of various kinds. And, of all the myriad of different musical instruments humankind has developed, honed and used to make prettyful noises down the years, perhaps none is as interesting to consider as the oldest and most conceptually abstract of the lot; the human voice.

To those of us not part of the musical fraternity, the idea of the voice being considered an instrument at all is a very odd one; it is used most of the time simply to communicate, and is thus perhaps unique among instruments in that its primary function is not musical. However, to consider a voice as merely an addition to a piece of music rather than being an instrumental part of it is to dismiss its importance to the sound of the piece, and as such it must be considered one by any composer or songwriter looking to produce something coherent. It is also an incredibly diverse tool at a musician’s disposal; capable of a large range of notes anyway in a competent singer, by combining the voices of different people one can produce a tonal range rivalled only by the piano, and making it the only instrument regularly used as the sole component of a musical entity (ie in a choir). Admittedly, not using it in conjunction with other instruments does rather limit what it can do without looking really stupid, but it is nonetheless a quite amazingly versatile musical tool.

The voice also has a huge advantage over every other instrument in that absolutely anyone can ‘play’ it; even people who self-confessedly ‘can’t sing’ may still find themselves mumbling their favourite tune in the shower or singing along with their iPod occasionally. Not only that, but it is the only instrument that does not require any tool in addition to the body in order to play, meaning it is carried with everyone absolutely everywhere, thus giving everybody listening to a piece of music a direct connection to it; they can sing, mumble, or even just hum along. Not only is this a wet dream from a marketer’s perspective, enabling word-of-mouth spread to increase its efficiency exponentially, but it also makes live music that other level more awesome (imagine a music festival without thousands of screaming fans belting out the lyrics) and just makes music that much more compelling and, indeed, human to listen to.

However, the main artistic reason for the fundamental musical importance of the voice has more to do with what it can convey- but to adequately explain this, I’m going to need to go off on a quite staggeringly over-optimistic detour as I try to explain, in under 500 words, the artistic point of music. Right, here we go…:

Music is, fundamentally, an art form, and thus (to a purist at least) can be said to exist for no purpose other than its own existence, and for making the world a better place for those of us lucky enough to be in it. However, art in all its forms is now an incredibly large field with literally millions of practitioners across the world, so just making something people find pretty doesn’t really cut it any more. This is why some extraordinarily gifted painters can draw something next to perfectly photo-realistic and make a couple of grand from it, whilst Damien Hirst can put a shark in some formaldehyde and sell it for a few million. What people are really interested in buying, especially when it comes to ‘modern’ art, is not the quality of brushwork or prettifulness of the final result (which are fairly common nowadays), but its meaning, its significance, what it is trying to convey; the story, theatre and uniqueness behind it all (far rarer commodities that, thanks to the simple economic law of supply and demand, are thus much more expensive).

(NB: This is not to say that I don’t think the kind of people who buy Tracy Emin pieces are rather gullible and easily led, and apparently have far more money than they do tangible grip on reality- but that’s a discussion for another time, and this is certainly how they would justify their purchases)

Thus, the real challenge to any artist worth his salt is to try and create a piece that has meaning, symbolism, and some form of emotion; and this applies to every artistic field, be it film, literature, paintings, videogames (yes, I am on that side of the argument) or, to try and wrench this post back on-topic, music. The true beauty and artistic skill of music, the key to what makes those songs that transcend mere music alone so special, lies in giving a song emotion and meaning, and in this function the voice is the perfect instrument. Other instruments can produce sweet, tortured strains capable of playing the heart strings like a violin, but virtue of being able to produce those tones in the form of language, capable of delivering an explicit message to redouble the effect of the emotional one, a song can take on another level of depth, meaning and artistry. A voice may not be the only way to make your song explicitly mean something, and quite often it’s not used in such an artistic capacity at all; but when it is used properly, it can be mighty, mighty effective.

Advertisement

Drunken Science

In my last post, I talked about the societal impact of alcohol and its place in our everyday culture; today, however, my inner nerd has taken it upon himself to get stuck into the real meat of the question of alcohol, the chemistry and biology of it all, and how all the science fits together.

To a scientist, the word ‘alcohol’ does not refer to a specific substance at all, but rather to a family of chemical compounds containing an oxygen and hydrogen atom bonded to one another (known as an OH group) on the end of a chain of carbon atoms. Different members of the family (or ‘homologous series’, to give it its proper name) have different numbers of carbon atoms and have slightly different physical properties (such as melting point), and they also react chemically to form slightly different compounds. The stuff we drink is that with two carbon atoms in its chain, and is technically known as ethanol.

There are a few things about ethanol that make it special stuff to us humans, and all of them refer to chemical reactions and biological interactions. The first is the formation of it; there are many different types of sugar found in nature (fructose & sucrose are two common examples; the ‘-ose’ ending is what denotes them as sugars), but one of the most common is glucose, with six carbon atoms. This is the substance our body converts starch and other sugars into in order to use for energy or store as glycogen. As such, many biological systems are so primed to convert other sugars into glucose, and it just so happens that when glucose breaks down in the presence of the right enzymes, it forms carbon dioxide and an alcohol; ethanol, to be precise, in a process known as either glycolosis (to a scientist) or fermentation (to everyone else).

Yeast performs this process in order to respire (ie produce energy) anaerobically (in the absence of oxygen), so leading to the two most common cases where this reaction occurs. The first we know as brewing, in which an anaerobic atmosphere is deliberately produced to make alcohol; the other occurs when baking bread. The yeast we put in the bread causes the sugar (ie glucose) in it to produce carbon dioxide, which is what causes the bread to rise since it has been filled with gas, whilst the ethanol tends to boil off in the heat of the baking process. For industrial purposes, ethanol is made by hydrating (reacting with water) an oil by-product called ethene, but the product isn’t generally something you’d want to drink.

But anyway, back to the booze itself, and this time what happens upon its entry into the body. Exactly why alcohol acts as a depressant and intoxicant (if that’s a proper word) is down to a very complex interaction with various parts and receptors of the brain that I am not nearly intelligent enough to understand, let alone explain. However, what I can explain is what happens when the body gets round to breaking the alcohol down and getting rid of the stuff. This takes place in the liver, an amazing organ that performs hundreds of jobs within the body and contains a vast repetoir of enzymes. One of these is known as alcohol dehydrogenase, which has the task of oxidising the alcohol (not a simple task, and one impossible without enzymes) into something the body can get rid of. However, most ethanol we drink is what is known as a primary alcohol (meaning the OH group is on the end of the carbon chain), and this causes it to oxidise in two stages, only the first of which can be done using alcohol dehydrogenase. This process converts the alcohol into an aldehyde (with an oxygen chemically double-bonded to the carbon where the OH group was), which in the case of ethanol is called acetaldehyde (or ethanal). This molecule cannot be broken down straight away, and instead gets itself lodged in the body’s tissues in such a way (thanks to its shape) to produce mild toxins, activate our immune system and make us feel generally lousy. This is also known as having a hangover, and only ends when the body is able to complete the second stage of the oxidation process and convert the acetaldehyde into acetic acid, which the body can get rid of relatively easily. Acetic acid is commonly known as the active ingredient in vinegar, which is why alcoholics smell so bad and are often said to be ‘pickled’.

This process occurs in the same way when other alcohols enter the body, but ethanol is unique in how harmless (relatively speaking) its aldehyde is. Methanol, for example, can also be oxidised by alcohol dehydrogenase, but the aldehyde it produces (officially called methanal) is commonly known as formaldehyde; a highly toxic substance used in preservation work and as a disinfectant that will quickly poison the body. It is for this reason that methanol is present in the fuel commonly known as ‘meths’- ethanol actually produces more energy per gram and makes up 90% of the fuel by volume, but since it is cheaper than most alcoholic drinks the toxic methanol is put in to prevent it being drunk by severely desperate alcoholics. Not that it stops many of them; methanol poisoning is a leading cause of death among many homeless people.

Homeless people were also responsible for a major discovery in the field of alcohol research, concerning the causes of alcoholism. For many years it was thought that alcoholics were purely addicts mentally rather than biologically, and had just ‘let it get to them’, but some years ago a young student (I believe she was Canadian, but certainty of that fact and her name both escape me) was looking for some fresh cadavers for her PhD research. She went to the police and asked if she could use the bodies of the various dead homeless people who they found on their morning beats, and when she started dissecting them she noticed signs of a compound in them that was known to be linked to heroin addiction. She mentioned to a friend that all these people appeared to be on heroin, but her friend said that these people barely had enough to buy drink, let alone something as expensive as heroin. This young doctor-to-be realised she might be onto something here, and changed the focus of her research onto studying how alcohol was broken down by different bodies, and discovered something quite astonishing. Inside serious alcoholics, ethanol was being broken down into this substance previously only linked to heroin addiction, leading her to believe that for some unlucky people, the behaviour of their bodies made alcohol as addictive to them as heroin was to others. Whilst this research has by no means settled the issue, it did demonstrate two important facts; firstly, that whilst alcoholism certainly has some links to mental issues, it is also fundamentally biological and genetic by nature and cannot be solely put down as the fault of the victim’s brain. Secondly, it ‘sciencified’ (my apologies to grammar nazis everywhere for making that word up) a fact already known by many reformed drinkers; that when a former alcoholic stops drinking, they can never go back. Not even one drink. There can be no ‘just having one’, or drinking socially with friends, because if one more drink hits their body, deprived for so long, there’s a very good chance it could kill them.

Still, that’s not a reason to get totally down about alcohol, for two very good reasons. The first of these comes from some (admittely rather spurious) research suggesting that ‘addictive personalities’, including alcoholics, are far more likely to do well in life, have good jobs and overall succeed; alcoholics are, by nature, present at the top as well as the bottom of our society. The other concerns the one bit of science I haven’t tried to explain here- your body is remarkably good at dealing with alcohol, and we all know it can make us feel better, so if only for your mental health a little drink now and then isn’t an all bad thing after all. And anyway, it makes for some killer YouTube videos…