One Foot In Front Of The Other

According to many, the thing that really sets human beings apart from the rest of the natural world is our mastery of locomotion; the ability to move faster, further and with heavier loads than any other creature typically does (never mind that our historical method of doing this was strapping several other animals to a large heap of wood and nails) across every medium our planet has to throw at us; land, sky, sea, snow, whatever. Nowadays, this concept has become associated with our endeavours in powered transport (cars, aeroplanes and such), but the story of human locomotion begins with a far more humble method of getting about that I shall dedicate today’s post to; walking.

It is thought that the first walkers were creatures that roughly approximate to our modern-day crustaceans; the early arthropods. In the early days of multicellular life on earth, these creatures ruled the seas (where all life had thus far been based) and fossils of the time show a wide variety of weird and wonderful creatures. The trilobites that one can nowadays buy as tourist souvenirs in Morocco are but one example; the top predators of the time were massive things, measuring several metres in length with giant teeth and layers of armour plate. All had bony exoskeletons, like the modern insects that are their descendants, bar a few small fish-like creatures a few millimetres in length who had developed the first backbones; in time, the descendants of these creatures would come to dominate life on earth. Since it was faster and allowed a greater range of motion, most early arthropods swam to get about; but others, like the metre-long Brontoscorpio (basically a giant underwater scorpion) preferred the slightly slower, but more efficient, idea of walking about on the seabed. Here, food was relatively plentiful in the form of small ‘grazers’ and attempting to push oneself through the water was wasteful of energy compared to trundling along the bottom. However, a new advantage also presented itself before too long; these creatures were able to cross land over short distances to reach prey- by coincidence, their primitive ‘lungs’ (that collected dissolved oxygen from water in much the same fashion as modern fish gills, but with a less fragile structure) worked just as well at harvesting oxygen from air as water, enabling them to survive on land. As plant life began to venture out onto land to better gain access to the air and light needed to survive, so the vertebrates (in the form of early amphibians) and arthropods began to follow the food, until the land was well and truly colonised by walking life forms.

Underwater, walking was significantly easier than on land; water is a far more dense fluid than air (hence why we can swim in the former but not the latter), and the increased buoyancy this offered meant that early walkers’ legs did not have to support so much of their body’s weight as they would do on land. This made it easier for them to develop the basic walking mechanic; one foot (or whatever you call the end of a scorpion’s leg) is pressed against the ground, before being held stiff and solid as the rest of the body is rotated around it’s joint, moving the creature as a whole forward slightly as it pivots. In almost all invertebrates, and early vertebrates, the creature’s legs are positioned at the side of the body, meaning that as the creature walks they tend to swing from side to side. Invertebrates typically partially counter this problem by having a lot of legs and stepping them in such an order to help them travel in a constant direction, and by having multi-jointed legs that can flex and translate the lateral components of motion into more forward-directed movement, preventing them from swinging from side to side. However, this doesn’t work so well at high speed when the sole priority is speed of movement of one’s feet, which is why most reconstructions of the movement of vertebrates circa 300 million years ago (with just four single-jointed legs stuck out to the side of the body) tends to show their body swinging dramatically from side to side, spine twisting this way and that.  This all changed with the coming of the dinosaurs, whose revolutionary evolutionary advantage was a change in construction of the hip that allowed their legs to point underneath the body, rather than sticking out at the side. Now, the pivoting action of the leg produces motion in the vertical, rather than horizontal direction, so no more spine-twisting mayhem. This makes travelling quickly easier and allows the upper body to be kept in a more stable position, good for striking at fleeing prey, as well as being more energy efficient. Such an evolutionary advantage would soon prove so significant that, during the late Triassic period, it allowed dinosaurs to completely take over from the mammal-like reptiles who had previously dominated the world. It would take more than 150 million years, a hell of a lot of evolution and a frickin’ asteroid to finally let these creatures’ descendants, in the form of mammals, finally prevail over the dinosaurs (by which time they had discovered the whole ‘legs pointing down’ trick).

When humankind were first trying to develop walking robots in the mid-twentieth century, the mechanics of the process were poorly understood, and there are a great many funny videos of prototype sets of legs completely failing. These designers had been operating under the idea that the role of the legs when walking was not just to keep a body standing up, but also to propel them forward, each leg pulling on the rest of the body when placed in front. However, after a careful study of new slow-motion footage of bipedal motion, it was realised that this was not the case at all, and we instead have gravity to thank for pushing us forward. When we walk, we actually lean over our frontmost foot, in effect falling over it before sticking our other leg out to catch ourselves, hence why we tend to go face to floor if the other leg gets caught or stuck. Our legs only really serve to keep us off the ground, pushing us upwards so we don’t actually fall over, and our leg muscles’ function here is to simply put each foot in front of the other (OK, so your calves might give you a bit of an extra flick but it’s not the key thing). When we run or climb, our motion changes; our legs bend, before our quadriceps extend them quickly, throwing us forward. Here we lean forward still further, but this is so that the motion of our quads is directed in the forward, rather than upward direction. This form of motion is less energy efficient, but covers more ground. This is the method by which we run, but does not define running itself; running is simply defined as the speed at which every step incorporates a bit of time where both feet are off the ground. Things get a little more complicated when we introduce more legs to the equation; so for four legged animals, such as horses, there are four footspeeds. When walking there are always three feet on the ground at any one time, when trotting there are always two, when cantering at least one, and when galloping a horse spends the majority of its time with both feet off the ground.

There is one downside to walking as a method of locomotion, however. When blogging about it, there isn’t much of a natural way to end a post.

Advertisement

Time is an illusion, lunchtime doubly so…

In the dim and distant past, time was, to humankind, a thing and not much more. There was light-time, then there was dark-time, then there was another lot of light-time; during the day we could hunt, fight, eat and try to stay alive, and during the night we could sleep and have sex. However, we also realised that there were some parts of the year with short days and colder night, and others that were warmer, brighter and better for hunting. Being the bright sort, we humans realised that the amount of time it spent in winter, spring, summer and autumn (fall is the WRONG WORD) was about the same each time around, and thought that rather than just waiting for it to warm up every time we could count how long it took for one cycle (or year) so that we could work out when it was going to get warm next year. This enabled us to plan our hunting and farming patterns, and it became recognised that some knowledge of how the year worked was advantageous to a tribe. Eventually, this got so important that people started building monuments to the annual seasonal progression, hence such weird and staggeringly impressive prehistoric engineering achievements as Stonehenge.

However, this basic understanding of the year and the seasons was only one step on the journey, and as we moved from a hunter-gatherer paradigm to more of a civilised existence, we realised the benefits that a complete calendar could offer us, and thus began our still-continuing test to quantify time. Nowadays our understanding of time extends to clocks accurate to the degree of nanoseconds, and an understanding of relativity, but for a long time our greatest quest into the realm of bringing organised time into our lives was the creation of the concept of the wee.

Having seven days of the week is, to begin with, a strange idea; seven is an awkward prime number, and it seems odd that we don’t pick number that is easier to divide and multiply by, like six, eight or even ten, as the basis for our temporal system. Six would seem to make the most sense; most of our months have around 30 days, or 5 six-day weeks, and 365 days a year is only one less than multiple of six, which could surely be some sort of religious symbolism (and there would be an exact multiple on leap years- even better). And it would mean a shorter week, and more time spent on the weekend, which would be really great. But no, we’re stuck with seven, and it’s all the bloody moon’s fault.

Y’see, the sun’s daily cycle is useful for measuring short-term time (night and day), and the earth’s rotation around it provides the crucial yearly change of season. However, the moon’s cycle is 28 days long (fourteen to wax, fourteen to wane, regular as clockwork), providing a nice intermediary time unit with which to divide up the year into a more manageable number of pieces than 365. Thus, we began dividing the year up into ‘moons’ and using them as a convenient reference that we could refer to every night. However, even a moon cycle is a bit long for day-to-day scheduling, and it proved advantageous for our distant ancestors to split it up even further. Unfortunately, 28 is an awkward number to divide into pieces, and its only factors are 1, 2, 4, 7 and 14. An increment of 1 or 2 days is simply too small to be useful, and a 4 day ‘week’ isn’t much better. A 14 day week would hardly be an improvement on 28 for scheduling purposes, so seven is the only number of a practical size for the length of the week. The fact that months are now mostly 30 or 31 days rather than 28 to try and fit the awkward fact that there are 12.36 moon cycles in a year, hasn’t changed matters, so we’re stuck with an awkward 7 day cycle.

However, this wasn’t the end of the issue for the historic time-definers (for want of a better word); there’s not much advantage in defining a seven day week if you can’t then define which day of said week you want the crops to be planted on. Therefore, different days of the week needed names for identification purposes, and since astronomy had already provided our daily, weekly and yearly time structures it made sense to look skyward once again when searching for suitable names. At this time, centuries before the invention of the telescope, we only knew of seven planets, those celestial bodies that could be seen with the naked eye; the sun, the moon (yeah, their definition of ‘planet’ was a bit iffy), Mercury, Venus, Mars, Jupiter and Saturn. It might seem to make sense, with seven planets and seven days of the week, to just name the days after the planets in a random order, but humankind never does things so simply, and the process of picking which day got named after which planet was a complicated one.

In around 1000 BC the Egyptians had decided to divide the daylight into twelve hours (because they knew how to pick a nice, easy-to-divide number), and the Babylonians then took this a stage further by dividing the entire day, including night-time, into 24 hours. The Babylonians were also great astronomers, and had thus discovered the seven visible planets- however, because they were a bit weird, they decided that each planet had its place in a hierarchy, and that this hierarchy was dictated by which planet took the longest to complete its cycle and return to the same point in the sky. This order was, for the record, Saturn (29 years), Jupiter (12 years), Mars (687 days), Sun (365 days), Venus (225 days), Mercury (88 days) and Moon (28 days). So, did they name the days after the planets in this order? Of course not, that would be far too simple; instead, they decided to start naming the hours of the day after the planets (I did say they were a bit weird) in that order, going back to Saturn when they got to the Moon.

However, 24 hours does not divide nicely by seven planets, so the planet after which the first hour of the day was named changed each day. So, the first hour of the first day of the week was named after Saturn, the first hour of the second day after the Sun, and so on. Since the list repeated itself each week, the Babylonians decided to name each day after the planet that the first hour of each day was named, so we got Saturnday, Sunday, Moonday, Marsday, Mercuryday, Jupiterday and Venusday.

Now, you may have noticed that these are not the days of the week we English speakers are exactly used to, and for that we can blame the Vikings. The planetary method for naming the days of the week was brought to Britain by the Romans, and when they left the Britons held on to the names. However, Britain then spent the next 7 centuries getting repeatedly invaded and conquered by various foreigners, and for most of that time it was the Germanic Vikings and Saxons who fought over the country. Both groups worshipped the same gods, those of Norse mythology (so Thor, Odin and so on), and one of the practices they introduced was to replace the names of four days of the week with those of four of their gods; Tyr’sday, Woden’sday (Woden was the Saxon word for Odin), Thor’sday and Frig’sday replaced Marsday, Mercuryday, Jupiterday and Venusday in England, and soon the fluctuating nature of language renamed the days of the week Saturday, Sunday, Monday, Tuesday, Wednesday, Thursday and Friday.

However, the old planetary names remained in the romance languages (the Spanish translations of the days Tuesday to Friday are Mardi, Mercredi, Jeudi and Vendredi), with one small exception. When the Roman Empire went Christian in the fourth century, the ten commandments dictated they remember the Sabbath day; but, to avoid copying the Jews (whose Sabbath was on Saturday), they chose to make Sunday the Sabbath day. It is for this reason that Monday, the first day of the working week after one’s day of rest, became the start of the week, taking over from the Babylonian’s choice of Saturday, but close to Rome they went one stage further and renamed Sunday ‘Deus Dominici’, or Day Of The Lord. The practice didn’t catch on in Britain, thousands of miles from Rome, but the modern day Spanish, French and Italian words for Sunday are domingo, dimanche and domenica respectively, all of which are locally corrupted forms of ‘Deus Dominici’.

This is one of those posts that doesn’t have a natural conclusion, or even much of a point to it. But hey; I didn’t start writing this because I wanted to make a point, but more to share the kind of stuff I find slightly interesting. Sorry if you didn’t.

The Offensive Warfare Problem

If life has shown itself to be particularly proficient at anything, it is fighting. There is hardly a creature alive today that does not employ physical violence in some form to get what it wants (or defend what it has) and, despite a vast array of moral arguments to the contrary of that being a good idea (I must do a post on the prisoner’s dilemma some time…), humankind is, of course, no exception. Unfortunately, our innate inventiveness and imagination as a race means that we have been able to let our brains take our fighting to the next level, with consequences that have got ever-more destructive as  time has gone  by. With the construction of the first atomic bombs, humankind had finally got to where it had threatened to for so long- the ability to literally wipe out planet earth.

This insane level of offensive firepower is not just restricted to large-scale big-guns (the kind that have been used fir political genital comparison since Napoleon revolutionised the use of artillery in warfare)- perhaps the most interesting and terrifying advancement in modern warfare and conflict has been the increased prevalence and distribution of powerful small arms, giving ‘the common man’ of the battlefield a level of destructive power that would be considered hideously overwrought in any other situation (or, indeed, the battlefield of 100 years ago). The epitomy of this effect is, of course, the Kalashnikov AK-47, whose cheapness and insane durability has rendered it invaluable to rebel groups or other hastily thrown together armies, giving them an ability to kill stuff that makes them very, very dangerous to the population of wherever they’re fighting.

And this distribution of such awesomely dangerous firepower has began to change warfare, and to explain how I need to go on a rather dramatic detour. The goal of warfare has always, basically, centred around the control of land and/or population, and as James Herbert makes so eminently clear in Dune, whoever has the power to destroy something controls it, at least in a military context. In his book Ender’s Shadow (I feel I should apologise for all these sci-fi references), Orson Scott Card makes the entirely separate point that defensive warfare in the context of space warfare makes no practical sense. For a ship & its weapons to work in space warfare, he rather convincingly argues, the level of destruction it must be able to deliver would have to be so large that, were it to ever get within striking distance of earth it would be able to wipe out literally billions- and, given the distance over which any space war must be conducted, mutually assured destruction simply wouldn’t work as a defensive strategy as it would take far too long for any counterstrike attempt to happen. Therefore, any attempt to base one’s warfare effort around defence, in a space warfare context, is simply too risky, since one ship (or even a couple of stray missiles) slipping through in any of the infinite possible approach directions to a planet would be able to cause uncountable levels of damage, leaving the enemy with a demonstrable ability to destroy one’s home planet and, thus, control over it and the tactical initiative. Thus, it doesn’t make sense to focus on a strategy of defensive warfare and any long-distance space war becomes a question of getting there first (plus a bit of luck).

This is all rather theoretical and, since we’re talking about a bunch of spaceships firing missiles at one another, not especially relevant when considering the realities of modern warfare- but it does illustrate a point, namely that as offensive capabilities increase the stakes rise of the prospect of defensive systems failing. This was spectacularly, and horrifyingly, demonstrated during 9/11, during which a handful of fanatics armed with AK’s were able to kill 5,000 people, destroy the world trade centre and irrevocably change the face of the world economy and world in general. And that came from only one mode of attack, and despite all the advances in airport security that have been made since then there is still ample opportunity for an attack of similar magnitude to happen- a terrorist organisation, we must remember, only needs to get lucky once. This means that ‘normal’ defensive methods, especially since they would have to be enforced into all of our everyday lives (given the format that terrorist attacks typically take), cannot be applied to this problem, and we must rely almost solely on intelligence efforts to try and defend ourselves.

This business of defence and offence being in imbalance in some form or another is not a phenomenon solely confined to the modern age. Once, wars were fought solely with clubs and shields, creating a somewhat balanced case of attack and defence;  attack with the club, defend with the shield. If you were good enough at defending, you could survive; simple as that. However, some bright spark then came up with the idea of the bow, and suddenly the world was in imbalance- even if an arrow couldn’t pierce an animal skin stretched over some sticks (which, most of the time, it could), it was fast enough to appear from nowhere before you had a chance to defend yourself. Thus, our defensive capabilities could not match our offensive ones. Fast forward a millennia or two, and we come to a similar situation; now we defended ourselves against arrows and such by hiding in castles behind giant stone walls  and other fortifications that were near-impossible to break down, until some smart alec realised the use of this weird black powder invented in China. The cannons that were subsequently invented could bring down castle walls in a matter of hours or less, and once again they could not be matched from the defensive standpoint- our only option now lay in hiding somewhere the artillery couldn’t get us, or running out of the way of these lumbering beasts. As artillery technology advanced throughout the ensuing centuries, this latter option became less and less feasible as the sheer numbers of high-explosive weaponry trained on opposition armies made them next-to impossible to fight in the field; but they were still difficult to aim accurately at well dug-in soldiers, and from these starting conditions we ended up with the First World War.

However, this is not a direct parallel of the situation we face now; today we deal with the simple and very real truth that a western power attempting to defend its borders (the situation is somewhat different when they are occupying somewhere like Afghanistan, but that can wait until another time) cannot rely on simple defensive methods alone- even if every citizen was an army trained veteran armed with a full complement of sub-machine guns (which they quite obviously aren’t), it wouldn’t be beyond the wit of a terrorist group to sneak a bomb in somewhere destructive. Right now, these methods may only be capable of killing or maiming hundreds or thousands at a time; tragic, but perhaps not capable of restructuring a society- but as our weapon systems get ever more advanced, and our more effective systems get ever cheaper and easier for fanatics to get hold of, the destructive power of lone murderers may increase dramatically, and with deadly consequences.

I’m not sure that counts as a coherent conclusion, or even if this counts as a coherent post, but it’s what y’got.

*”It is sweet and right to die for your country”

Patriotism is one of humankind’s odder traits, at least on the face of it. For many hundreds of years, dying in a war hundreds of miles away from home defending/stealing for what were, essentially, the business interests and egos of rich men too powerful to even acknowledge your existence was considered the absolute pinnacle of honour, the ultimate way to bridge the gap between this world and the next. This near-universal image of the valiance of dying for your country was heavily damaged by the first world war, near-crushing “the old lie: Dulce Et Decorum Est/Pro Patria Mori*” (to quote Wilfred Owen), but even nowadays soldiers fighting in a dubiously moral war that has killed far more people than the events it was ‘payback’ for are regarded as heroes, their deaths always granted both respect and news coverage (and rightly so). Both the existence and extent of patriotism become increasingly bizarre and prevalent when we look away from the field of conflict; national identity is one of the most hotly argued and defended topics we have, stereotypes and national slurs form the basis for a vast range of insults, and the level of passion and pride in ‘our’ people and teams on the sporting stage is quite staggering to behold (as the recent London 2012 games showed to a truly spectacular degree).

But… why? What’s the point? Why is ‘our’ country any better than everyone else’s, to us at least, just by virtue of us having been born there by chance? Why do we feel such a connection to a certain group of sportspeople, many of whom we might hate as people more than any of their competitors, simply because we share an accent? Why are we patriotic?

The source of the whole business may have its roots in my old friend, the hypothetical neolithic tribe. In such a situation, one so small that everybody knows and constantly interacts with everyone else, then pride in connection with the achievements of one’s tribe is understandable. Every achievement made by your tribe is of direct benefit to you, and is therefore worthy of celebration. Over an extended period of time, during which your tribe may enjoy a run of success, you start to develop a sense of pride that you are achieving so much, and that you are doing better than surrounding others.

This may, at least to a degree, have something to do with why we enjoy successes that are, on the scale of countries, wholly unconnected to us, but nonetheless are done in the name of our extended ‘tribe’. But what it doesn’t explain so well is the whole ‘through thick and thin mentality’- that of supporting your country’s endeavours throughout its failings as well as its successes, of continuing to salvage a vestige of pride even if your country’s name has been dragged through the mud.

We may find a clue to this by, once again, turning our attention to the sporting field, this time on the level of clubs (who, again, receive a level of support and devotion wholly out of proportion to their achievements, and who are a story in their own right). Fans are, obviously, always proud and passionate when their side is doing well- but just as important to be considered a ‘true’ fan is the ability to carry on supporting during the days when you’re bouncing along the bottom of the table praying to avoid relegation. Those who do not, either abandoning their side or switching allegiance to another, are considered akin to traitors, and when the good times return may be ostracized (or at least disrespected) for not having faith. We can apply this same idea to being proud of our country despite its poor behaviour and its failings- for how can we claim to be proud of our great achievements if we do not at least remain loyal to our country throughout its darkest moments?

But to me, the core of the whole business is simply a question of self-respect. Like it or not, our nationality is a huge part of our personal identity, a core segment of our identification and being that cannot be ignored by us, for it certainly will not be by others. We are, to a surprisingly large degree, identified by our country, and if we are to have a degree of pride in ourselves, a sense of our own worth and place, then we must take pride in all facets of our identity- not only that, but a massed front of people prepared to be proud of their nationality in and of itself gives us a reason, or at least part of one, to be proud of. It may be irrational, illogical and largely irrelevant, but taking pride in every pointless achievement made in the name of our nation is a natural part of identifying with and being proud of ourselves, and who we are.

My apologies for the slightly shorter than normal post today, I’ve been feeling a little run down today. I’ll try and make it up next time…