Drunken Science

In my last post, I talked about the societal impact of alcohol and its place in our everyday culture; today, however, my inner nerd has taken it upon himself to get stuck into the real meat of the question of alcohol, the chemistry and biology of it all, and how all the science fits together.

To a scientist, the word ‘alcohol’ does not refer to a specific substance at all, but rather to a family of chemical compounds containing an oxygen and hydrogen atom bonded to one another (known as an OH group) on the end of a chain of carbon atoms. Different members of the family (or ‘homologous series’, to give it its proper name) have different numbers of carbon atoms and have slightly different physical properties (such as melting point), and they also react chemically to form slightly different compounds. The stuff we drink is that with two carbon atoms in its chain, and is technically known as ethanol.

There are a few things about ethanol that make it special stuff to us humans, and all of them refer to chemical reactions and biological interactions. The first is the formation of it; there are many different types of sugar found in nature (fructose & sucrose are two common examples; the ‘-ose’ ending is what denotes them as sugars), but one of the most common is glucose, with six carbon atoms. This is the substance our body converts starch and other sugars into in order to use for energy or store as glycogen. As such, many biological systems are so primed to convert other sugars into glucose, and it just so happens that when glucose breaks down in the presence of the right enzymes, it forms carbon dioxide and an alcohol; ethanol, to be precise, in a process known as either glycolosis (to a scientist) or fermentation (to everyone else).

Yeast performs this process in order to respire (ie produce energy) anaerobically (in the absence of oxygen), so leading to the two most common cases where this reaction occurs. The first we know as brewing, in which an anaerobic atmosphere is deliberately produced to make alcohol; the other occurs when baking bread. The yeast we put in the bread causes the sugar (ie glucose) in it to produce carbon dioxide, which is what causes the bread to rise since it has been filled with gas, whilst the ethanol tends to boil off in the heat of the baking process. For industrial purposes, ethanol is made by hydrating (reacting with water) an oil by-product called ethene, but the product isn’t generally something you’d want to drink.

But anyway, back to the booze itself, and this time what happens upon its entry into the body. Exactly why alcohol acts as a depressant and intoxicant (if that’s a proper word) is down to a very complex interaction with various parts and receptors of the brain that I am not nearly intelligent enough to understand, let alone explain. However, what I can explain is what happens when the body gets round to breaking the alcohol down and getting rid of the stuff. This takes place in the liver, an amazing organ that performs hundreds of jobs within the body and contains a vast repetoir of enzymes. One of these is known as alcohol dehydrogenase, which has the task of oxidising the alcohol (not a simple task, and one impossible without enzymes) into something the body can get rid of. However, most ethanol we drink is what is known as a primary alcohol (meaning the OH group is on the end of the carbon chain), and this causes it to oxidise in two stages, only the first of which can be done using alcohol dehydrogenase. This process converts the alcohol into an aldehyde (with an oxygen chemically double-bonded to the carbon where the OH group was), which in the case of ethanol is called acetaldehyde (or ethanal). This molecule cannot be broken down straight away, and instead gets itself lodged in the body’s tissues in such a way (thanks to its shape) to produce mild toxins, activate our immune system and make us feel generally lousy. This is also known as having a hangover, and only ends when the body is able to complete the second stage of the oxidation process and convert the acetaldehyde into acetic acid, which the body can get rid of relatively easily. Acetic acid is commonly known as the active ingredient in vinegar, which is why alcoholics smell so bad and are often said to be ‘pickled’.

This process occurs in the same way when other alcohols enter the body, but ethanol is unique in how harmless (relatively speaking) its aldehyde is. Methanol, for example, can also be oxidised by alcohol dehydrogenase, but the aldehyde it produces (officially called methanal) is commonly known as formaldehyde; a highly toxic substance used in preservation work and as a disinfectant that will quickly poison the body. It is for this reason that methanol is present in the fuel commonly known as ‘meths’- ethanol actually produces more energy per gram and makes up 90% of the fuel by volume, but since it is cheaper than most alcoholic drinks the toxic methanol is put in to prevent it being drunk by severely desperate alcoholics. Not that it stops many of them; methanol poisoning is a leading cause of death among many homeless people.

Homeless people were also responsible for a major discovery in the field of alcohol research, concerning the causes of alcoholism. For many years it was thought that alcoholics were purely addicts mentally rather than biologically, and had just ‘let it get to them’, but some years ago a young student (I believe she was Canadian, but certainty of that fact and her name both escape me) was looking for some fresh cadavers for her PhD research. She went to the police and asked if she could use the bodies of the various dead homeless people who they found on their morning beats, and when she started dissecting them she noticed signs of a compound in them that was known to be linked to heroin addiction. She mentioned to a friend that all these people appeared to be on heroin, but her friend said that these people barely had enough to buy drink, let alone something as expensive as heroin. This young doctor-to-be realised she might be onto something here, and changed the focus of her research onto studying how alcohol was broken down by different bodies, and discovered something quite astonishing. Inside serious alcoholics, ethanol was being broken down into this substance previously only linked to heroin addiction, leading her to believe that for some unlucky people, the behaviour of their bodies made alcohol as addictive to them as heroin was to others. Whilst this research has by no means settled the issue, it did demonstrate two important facts; firstly, that whilst alcoholism certainly has some links to mental issues, it is also fundamentally biological and genetic by nature and cannot be solely put down as the fault of the victim’s brain. Secondly, it ‘sciencified’ (my apologies to grammar nazis everywhere for making that word up) a fact already known by many reformed drinkers; that when a former alcoholic stops drinking, they can never go back. Not even one drink. There can be no ‘just having one’, or drinking socially with friends, because if one more drink hits their body, deprived for so long, there’s a very good chance it could kill them.

Still, that’s not a reason to get totally down about alcohol, for two very good reasons. The first of these comes from some (admittely rather spurious) research suggesting that ‘addictive personalities’, including alcoholics, are far more likely to do well in life, have good jobs and overall succeed; alcoholics are, by nature, present at the top as well as the bottom of our society. The other concerns the one bit of science I haven’t tried to explain here- your body is remarkably good at dealing with alcohol, and we all know it can make us feel better, so if only for your mental health a little drink now and then isn’t an all bad thing after all. And anyway, it makes for some killer YouTube videos…

Advertisement

The Conquest of Air

Everybody in the USA, and in fact just about everyone across the world, has heard of Orville and Wilbur Wright. Two of the pioneers of aviation, when their experimental biplane Flyer achieved the first ever manned, powered, heavier-than-air flight on the morning of December 17, 1903, they had finally achieved one of man’s long-held dreams; control and mastery of air travel.

However, what is often puzzling when considering the Wright brothers’ story is the number of misconceptions surrounding them. Many, for instance, are under the impression that they were the first people to fly at all, inventing all the various technicalities of lift, aerofoil structures and control that are now commonplace in today’s aircraft. In fact, the story of flight, perhaps the oldest and maddest of human ambitions, an idea inspired by every time someone has looked up in wonder at the graceful flight of a bird, is a good deal older than either of them.

Our story begins, as does nearly all technological innovation, in imperial China, around 300 BC (the Greek scholar Archytas had admittedly made a model wooden pigeon ‘fly’ some 100 years previously, but nobody is sure exactly how he managed it). The Chinese’s first contribution was the invention of the kite, an innovation that would be insignificant if it wasn’t for whichever nutter decided to build one big enough to fly in. However, being strapped inside a giant kite and sent hurtling skywards not only took some balls, but was heavily dependent on wind conditions, heinously dangerous and dubiously useful, so in the end the Chinese gave up on manned flight and turned instead to unmanned ballooning, which they used for both military signalling and ceremonial purposes. It isn’t actually known if they ever successfully put a man into the air using a kite, but they almost certainly gave it a go. The Chinese did have one further attempt, this time at inventing the rocket engine, some years later, in which a young and presumably mental man theorised that if you strapped enough fireworks to a chair then they would send the chair and its occupants hurtling into the night sky. His prototype (predictably) exploded, and it wasn’t for two millennia, after the passage of classical civilisation, the Dark Ages and the Renaissance, that anyone tried flight again.

That is not to say that the idea didn’t stick around. The science was, admittedly beyond most people, but as early as 1500 Leonardo da Vinci, after close examination of bird wings, had successfully deduced the principle of lift and made several sketches showing designs for a manned glider. The design was never tested, and not fully rediscovered for many hundreds of years after his death (Da Vinci was not only a controversial figure and far ahead of his time, but wrote his notebooks in a code that it took centuries to decipher), but modern-day experiments have shown that his design would probably have worked. Da Vinci also put forward the popular idea of ornithopters, aircraft powered by flapping motion as in bird wings, and many subsequent attempts at flight attempted to emulate this method of motion. Needless to say, these all failed (not least because very few of the inventors concerned actually understood aerodynamics).

In fact, it wasn’t until the late 18th century that anyone started to really make any headway in the pursuit of flight. In 1783, a Parisian physics professor, Jacques Charles, built on the work of several Englishmen concerning the newly discovered hydrogen gas and the properties and behaviour of gases themselves. Theorising that, since hydrogen was less dense than air, it should follow Archimedes’ principle of buoyancy and rise, thus enabling it to lift a balloon, he launched the world’s first hydrogen balloon from the Champs du Mars on August 27th. The balloon was only small, and there were significant difficulties encountered in building it, but in the design process Charles, aided by his engineers the Roberts brothers, invented a method of treating silk to make it airtight, spelling the way for future pioneers of aviation. Whilst Charles made some significant headway in the launch of ever-larger hydrogen balloons, he was beaten to the next significant milestones by the Montgolfier brothers, Joseph-Michel and Jacques-Etienne. In that same year, their far simpler hot-air balloon designs not only put the first living things (a sheep, rooster and duck) into the atmosphere, but, just a month later, a human too- Jacques-Etienne was the first European, and probably the first human, ever to fly.

After that, balloon technology took off rapidly (no pun intended). The French rapidly became masters of the air, being the first to cross the English Channel and creators of the first steerable and powered balloon flights. Finally settling on Charles’ hydrogen balloons as a preferable method of flight, blimps and airships began, over the next century or so, to become an accepted method of travel, and would remain so right up until the Hindenburg disaster of 1937, which rather put people off the idea. For some scientists and engineers, humankind had made it- we could now fly, could control where we were going at least partially independent of the elements, and any attempt to do so with a heavier-than-air machine was both a waste of time and money, the preserve of dreamers. Nonetheless, to change the world, you sometimes have to dream big, and that was where Sir George Cayley came in.

Cayley was an aristocratic Yorkshireman, a skilled engineer and inventor, and a magnanimous, generous man- he offered all of his inventions for the public good and expected no payment for them. He dabbled in a number of fields, including seatbelts, lifeboats, caterpillar tracks, prosthetics, ballistics and railway signalling. In his development of flight, he even reinvented the wheel- he developed the idea of holding a wheel in place using thin metal spokes under tension rather than solid ones under compression, in an effort to make the wheels lighter, and is thus responsible for making all modern bicycles practical to use. However, he is most famous for being the first man ever, in 1853, to put somebody into the air using a heavier-than-air glider (although Cayley may have put a ten-year old in a biplane four years earlier).

The man in question was Cayley’s chauffeur (or butler- historical sources differ widely), who was (perhaps understandably) so hesitant to go in his boss’ mental contraption that he handed in his notice upon landing after his flight across Brompton Dale, stating  as his reason that ‘I was hired to drive, not fly’. Nonetheless, Cayley had shown that the impossible could be done- man could fly using just wings and wheels. He had also designed the aerofoil from scratch, identified the forces of thrust, lift, weight and drag that control an aircraft’s movements, and paved the way for the true pioneer of ‘heavy’ flight- Otto Lilienthal.

Lilienthal (aka ‘The Glider King’) was another engineer, making 25 patents in his life, including a revolutionary new engine design. But his fame comes from a world without engines- the world of the sky, with which he was obsessed. He was just a boy when he first strapped wings to his arms in an effort to fly (which obviously failed completely), and later published works detailing the physics of bird flight. It wasn’t until 1891, aged 43, once his career and financial position was stable and he had finished fighting in the Franco-Prussian War, that he began to fly in earnest, building around 12 gliders over a 5-year period (of which 6 still survive). It might have taken him a while, but once he started there was no stopping him, as he made over 2000 flights in just 5 years (averaging more than one every day). During this time he was only able to rack up 5 hours of flight time (meaning his average flight time was just 9 seconds), but his contribution to his field was enormous. He was the first to be able to control and manoeuvre his machines by varying his position and weight distribution, a factor whose importance he realised was absolutely paramount, and also recognised that a proper understanding of how to achieve powered flight (a pursuit that had been proceeding largely unsuccessfully for the past 50 years) could not be achieved without a basis in unpowered glider flight, in recognising that one must work in harmony with aerodynamic forces. Tragically, one of Lilienthal’s gliders crashed in 1896, and he died after two days in hospital. But his work lived on, and the story of his exploits and his death reached across the world, including to a pair of brothers living in Dayton, Ohio, USA, by the name of Wright. Together, the Wright brothers made huge innovations- they redesigned the aerofoil more efficiently, revolutionised aircraft control using wing warping technology (another idea possibly invented by da Vinci), conducted hours of testing in their own wind tunnel, built dozens of test gliders and brought together the work of Cayley, Lilienthal, da Vinci and a host of other, mostly sadly dead, pioneers of the air.  The Wright brothers are undoubtedly the conquerors of the air, being the first to show that man need not be constrained by either gravity or wind, but can use the air as a medium of travel unlike any other. But the credit is not theirs- it is a credit shared between all those who have lived and died in pursuit of the dream of fling like birds. To quote Lilienthal’s dying words, as he lay crippled by mortal injuries from his crash, ‘Sacrifices must be made’.