The Conquest of Air

Everybody in the USA, and in fact just about everyone across the world, has heard of Orville and Wilbur Wright. Two of the pioneers of aviation, when their experimental biplane Flyer achieved the first ever manned, powered, heavier-than-air flight on the morning of December 17, 1903, they had finally achieved one of man’s long-held dreams; control and mastery of air travel.

However, what is often puzzling when considering the Wright brothers’ story is the number of misconceptions surrounding them. Many, for instance, are under the impression that they were the first people to fly at all, inventing all the various technicalities of lift, aerofoil structures and control that are now commonplace in today’s aircraft. In fact, the story of flight, perhaps the oldest and maddest of human ambitions, an idea inspired by every time someone has looked up in wonder at the graceful flight of a bird, is a good deal older than either of them.

Our story begins, as does nearly all technological innovation, in imperial China, around 300 BC (the Greek scholar Archytas had admittedly made a model wooden pigeon ‘fly’ some 100 years previously, but nobody is sure exactly how he managed it). The Chinese’s first contribution was the invention of the kite, an innovation that would be insignificant if it wasn’t for whichever nutter decided to build one big enough to fly in. However, being strapped inside a giant kite and sent hurtling skywards not only took some balls, but was heavily dependent on wind conditions, heinously dangerous and dubiously useful, so in the end the Chinese gave up on manned flight and turned instead to unmanned ballooning, which they used for both military signalling and ceremonial purposes. It isn’t actually known if they ever successfully put a man into the air using a kite, but they almost certainly gave it a go. The Chinese did have one further attempt, this time at inventing the rocket engine, some years later, in which a young and presumably mental man theorised that if you strapped enough fireworks to a chair then they would send the chair and its occupants hurtling into the night sky. His prototype (predictably) exploded, and it wasn’t for two millennia, after the passage of classical civilisation, the Dark Ages and the Renaissance, that anyone tried flight again.

That is not to say that the idea didn’t stick around. The science was, admittedly beyond most people, but as early as 1500 Leonardo da Vinci, after close examination of bird wings, had successfully deduced the principle of lift and made several sketches showing designs for a manned glider. The design was never tested, and not fully rediscovered for many hundreds of years after his death (Da Vinci was not only a controversial figure and far ahead of his time, but wrote his notebooks in a code that it took centuries to decipher), but modern-day experiments have shown that his design would probably have worked. Da Vinci also put forward the popular idea of ornithopters, aircraft powered by flapping motion as in bird wings, and many subsequent attempts at flight attempted to emulate this method of motion. Needless to say, these all failed (not least because very few of the inventors concerned actually understood aerodynamics).

In fact, it wasn’t until the late 18th century that anyone started to really make any headway in the pursuit of flight. In 1783, a Parisian physics professor, Jacques Charles, built on the work of several Englishmen concerning the newly discovered hydrogen gas and the properties and behaviour of gases themselves. Theorising that, since hydrogen was less dense than air, it should follow Archimedes’ principle of buoyancy and rise, thus enabling it to lift a balloon, he launched the world’s first hydrogen balloon from the Champs du Mars on August 27th. The balloon was only small, and there were significant difficulties encountered in building it, but in the design process Charles, aided by his engineers the Roberts brothers, invented a method of treating silk to make it airtight, spelling the way for future pioneers of aviation. Whilst Charles made some significant headway in the launch of ever-larger hydrogen balloons, he was beaten to the next significant milestones by the Montgolfier brothers, Joseph-Michel and Jacques-Etienne. In that same year, their far simpler hot-air balloon designs not only put the first living things (a sheep, rooster and duck) into the atmosphere, but, just a month later, a human too- Jacques-Etienne was the first European, and probably the first human, ever to fly.

After that, balloon technology took off rapidly (no pun intended). The French rapidly became masters of the air, being the first to cross the English Channel and creators of the first steerable and powered balloon flights. Finally settling on Charles’ hydrogen balloons as a preferable method of flight, blimps and airships began, over the next century or so, to become an accepted method of travel, and would remain so right up until the Hindenburg disaster of 1937, which rather put people off the idea. For some scientists and engineers, humankind had made it- we could now fly, could control where we were going at least partially independent of the elements, and any attempt to do so with a heavier-than-air machine was both a waste of time and money, the preserve of dreamers. Nonetheless, to change the world, you sometimes have to dream big, and that was where Sir George Cayley came in.

Cayley was an aristocratic Yorkshireman, a skilled engineer and inventor, and a magnanimous, generous man- he offered all of his inventions for the public good and expected no payment for them. He dabbled in a number of fields, including seatbelts, lifeboats, caterpillar tracks, prosthetics, ballistics and railway signalling. In his development of flight, he even reinvented the wheel- he developed the idea of holding a wheel in place using thin metal spokes under tension rather than solid ones under compression, in an effort to make the wheels lighter, and is thus responsible for making all modern bicycles practical to use. However, he is most famous for being the first man ever, in 1853, to put somebody into the air using a heavier-than-air glider (although Cayley may have put a ten-year old in a biplane four years earlier).

The man in question was Cayley’s chauffeur (or butler- historical sources differ widely), who was (perhaps understandably) so hesitant to go in his boss’ mental contraption that he handed in his notice upon landing after his flight across Brompton Dale, stating  as his reason that ‘I was hired to drive, not fly’. Nonetheless, Cayley had shown that the impossible could be done- man could fly using just wings and wheels. He had also designed the aerofoil from scratch, identified the forces of thrust, lift, weight and drag that control an aircraft’s movements, and paved the way for the true pioneer of ‘heavy’ flight- Otto Lilienthal.

Lilienthal (aka ‘The Glider King’) was another engineer, making 25 patents in his life, including a revolutionary new engine design. But his fame comes from a world without engines- the world of the sky, with which he was obsessed. He was just a boy when he first strapped wings to his arms in an effort to fly (which obviously failed completely), and later published works detailing the physics of bird flight. It wasn’t until 1891, aged 43, once his career and financial position was stable and he had finished fighting in the Franco-Prussian War, that he began to fly in earnest, building around 12 gliders over a 5-year period (of which 6 still survive). It might have taken him a while, but once he started there was no stopping him, as he made over 2000 flights in just 5 years (averaging more than one every day). During this time he was only able to rack up 5 hours of flight time (meaning his average flight time was just 9 seconds), but his contribution to his field was enormous. He was the first to be able to control and manoeuvre his machines by varying his position and weight distribution, a factor whose importance he realised was absolutely paramount, and also recognised that a proper understanding of how to achieve powered flight (a pursuit that had been proceeding largely unsuccessfully for the past 50 years) could not be achieved without a basis in unpowered glider flight, in recognising that one must work in harmony with aerodynamic forces. Tragically, one of Lilienthal’s gliders crashed in 1896, and he died after two days in hospital. But his work lived on, and the story of his exploits and his death reached across the world, including to a pair of brothers living in Dayton, Ohio, USA, by the name of Wright. Together, the Wright brothers made huge innovations- they redesigned the aerofoil more efficiently, revolutionised aircraft control using wing warping technology (another idea possibly invented by da Vinci), conducted hours of testing in their own wind tunnel, built dozens of test gliders and brought together the work of Cayley, Lilienthal, da Vinci and a host of other, mostly sadly dead, pioneers of the air.  The Wright brothers are undoubtedly the conquerors of the air, being the first to show that man need not be constrained by either gravity or wind, but can use the air as a medium of travel unlike any other. But the credit is not theirs- it is a credit shared between all those who have lived and died in pursuit of the dream of fling like birds. To quote Lilienthal’s dying words, as he lay crippled by mortal injuries from his crash, ‘Sacrifices must be made’.


The Land of the Red

Nowadays, the country to talk about if you want to be seen as being politically forward-looking is, of course, China. The most populous nation on Earth (containing 1.3 billion souls) with an economy and defence budget second only to the USA in terms of size, it also features a gigantic manufacturing and raw materials extraction industry, the world’s largest standing army and one of only five remaining communist governments. In many ways, this is China’s second boom as a superpower, after its early forays into civilisation and technological innovation around the time of Christ made it the world’s largest economy for most of the intervening time. However, the technological revolution that swept the Western world in the two or three hundred years during and preceding the Industrial Revolution (which, according to QI, was entirely due to the development and use of high-quality glass in Europe, a material almost totally unheard of in China having been invented in Egypt and popularised by the Romans) rather passed China by, leaving it a severely underdeveloped nation by the nineteenth century. After around 100 years of bitter political infighting, during which time the 2000 year old Imperial China was replaced by a republic whose control was fiercely contested between nationalists and communists, the chaos of the Second World War destroyed most of what was left of the system. The Second Sino-Japanese War (as that particular branch of WWII was called) killed around 20 million Chinese civilians, the second biggest loss to a country after the Soviet Union, as a Japanese army fresh from an earlier revolution from Imperial to modern systems went on a rampage of rape, murder and destruction throughout the underdeveloped northern China, where some war leaders still fought with swords. The war also annihilated the nationalists, leaving the communists free to sweep to power after the Japanese surrender and establish the now 63-year old People’s Republic, then lead by former librarian Mao Zedong.

Since then, China has changed almost beyond recognition. During the idolised Mao’s reign, the Chinese population near-doubled in an effort to increase the available worker population, an idea tried far less successfully in other countries around the world with significantly less space to fill. This population was then put to work during Mao’s “Great Leap Forward”, in which he tried to move his country away from its previously agricultural economy and into a more manufacturing-centric system. However, whilst the Chinese government insists to this day that three subsequent years of famine were entirely due to natural disasters such as drought and poor weather, and only killed 15 million people, most external commentators agree that the sudden change in the availability of food thanks to the Great Leap certainly contributed to the death toll estimated to actually be in the region of 20-40 million. Oh, and the whole business was an economic failure, as farmers uneducated in modern manufacturing techniques attempted to produce steel at home, resulting in a net replacement of useful food for useless, low-quality pig iron.

This event in many ways typifies the Chinese way- that if millions of people must suffer in order for things to work out better in the long run and on the numbers sheet, then so be it, partially reflecting the disregard for the value of life historically also common in Japan. China is a country that has said it would, in the event of a nuclear war, consider the death of 90% of their population acceptable losses so long as they won, a country whose main justification for this “Great Leap Forward” was to try and bring about a state of social structure & culture that the government could effectively impose socialism upon, as it tried to do during its “Cultural Revolution” during the mid-sixties. All this served to do was get a lot of people killed, resulted in a decade of absolute chaos, literally destroyed China’s education system and, despite reaffirming Mao’s godlike status (partially thanks to an intensification in the formation of his personality cult), some of his actions rather shamed the governmental high-ups, forcing the party to take the angle that, whilst his guiding thought was of course still the foundation of the People’s Republic and entirely correct in every regard, his actions were somehow separate from that and got rather brushed under the carpet. It did help that, by this point, Mao was now dead and was unlikely to have them all hung for daring to question his actions.

But, despite all this chaos, all the destruction and all the political upheaval (nowadays the government is still liable to arrest anyone who suggests that the Cultural Revolution was a good idea), these things shaped China into the powerhouse it is today. It may have slaughtered millions of people and resolutely not worked for 20 years, but Mao’s focus on a manufacturing economy has now started to bear fruit and give the Chinese economy a stable footing that many countries would dearly love in these days of economic instability. It may have an appalling human rights record and have presided over the large-scale destruction of the Chinese environment, but Chinese communism has allowed for the government to control its labour force and industry effectively, allowing it to escape the worst ravages of the last few economic downturns and preventing internal instability. And the extent to which it has forced itself upon the people of China for decades, forcing them into the party line with an iron fist, has allowed its controls to be gently relaxed in the modern era whilst ensuring the government’s position is secure, to an extent satisfying the criticisms of western commentators. Now, China is rich enough and positioned solidly enough to placate its people, to keep up its education system and build cheap housing for the proletariat. To an accountant, therefore,  this has all worked out in the long run.

But we are not all accountants or economists- we are members of the human race, and there is more for us to consider than just some numbers on a spreadsheet. The Chinese government employs thousands of internet security agents to ensure that ‘dangerous’ ideas are not making their way into the country via the web, performs more executions annually than the rest of the world combined, and still viciously represses every critic of the government and any advocate of a new, more democratic system. China has paid an enormously heavy price for the success it enjoys today. Is that price worth it? Well, the government thinks so… but do you?