Drunken Science

In my last post, I talked about the societal impact of alcohol and its place in our everyday culture; today, however, my inner nerd has taken it upon himself to get stuck into the real meat of the question of alcohol, the chemistry and biology of it all, and how all the science fits together.

To a scientist, the word ‘alcohol’ does not refer to a specific substance at all, but rather to a family of chemical compounds containing an oxygen and hydrogen atom bonded to one another (known as an OH group) on the end of a chain of carbon atoms. Different members of the family (or ‘homologous series’, to give it its proper name) have different numbers of carbon atoms and have slightly different physical properties (such as melting point), and they also react chemically to form slightly different compounds. The stuff we drink is that with two carbon atoms in its chain, and is technically known as ethanol.

There are a few things about ethanol that make it special stuff to us humans, and all of them refer to chemical reactions and biological interactions. The first is the formation of it; there are many different types of sugar found in nature (fructose & sucrose are two common examples; the ‘-ose’ ending is what denotes them as sugars), but one of the most common is glucose, with six carbon atoms. This is the substance our body converts starch and other sugars into in order to use for energy or store as glycogen. As such, many biological systems are so primed to convert other sugars into glucose, and it just so happens that when glucose breaks down in the presence of the right enzymes, it forms carbon dioxide and an alcohol; ethanol, to be precise, in a process known as either glycolosis (to a scientist) or fermentation (to everyone else).

Yeast performs this process in order to respire (ie produce energy) anaerobically (in the absence of oxygen), so leading to the two most common cases where this reaction occurs. The first we know as brewing, in which an anaerobic atmosphere is deliberately produced to make alcohol; the other occurs when baking bread. The yeast we put in the bread causes the sugar (ie glucose) in it to produce carbon dioxide, which is what causes the bread to rise since it has been filled with gas, whilst the ethanol tends to boil off in the heat of the baking process. For industrial purposes, ethanol is made by hydrating (reacting with water) an oil by-product called ethene, but the product isn’t generally something you’d want to drink.

But anyway, back to the booze itself, and this time what happens upon its entry into the body. Exactly why alcohol acts as a depressant and intoxicant (if that’s a proper word) is down to a very complex interaction with various parts and receptors of the brain that I am not nearly intelligent enough to understand, let alone explain. However, what I can explain is what happens when the body gets round to breaking the alcohol down and getting rid of the stuff. This takes place in the liver, an amazing organ that performs hundreds of jobs within the body and contains a vast repetoir of enzymes. One of these is known as alcohol dehydrogenase, which has the task of oxidising the alcohol (not a simple task, and one impossible without enzymes) into something the body can get rid of. However, most ethanol we drink is what is known as a primary alcohol (meaning the OH group is on the end of the carbon chain), and this causes it to oxidise in two stages, only the first of which can be done using alcohol dehydrogenase. This process converts the alcohol into an aldehyde (with an oxygen chemically double-bonded to the carbon where the OH group was), which in the case of ethanol is called acetaldehyde (or ethanal). This molecule cannot be broken down straight away, and instead gets itself lodged in the body’s tissues in such a way (thanks to its shape) to produce mild toxins, activate our immune system and make us feel generally lousy. This is also known as having a hangover, and only ends when the body is able to complete the second stage of the oxidation process and convert the acetaldehyde into acetic acid, which the body can get rid of relatively easily. Acetic acid is commonly known as the active ingredient in vinegar, which is why alcoholics smell so bad and are often said to be ‘pickled’.

This process occurs in the same way when other alcohols enter the body, but ethanol is unique in how harmless (relatively speaking) its aldehyde is. Methanol, for example, can also be oxidised by alcohol dehydrogenase, but the aldehyde it produces (officially called methanal) is commonly known as formaldehyde; a highly toxic substance used in preservation work and as a disinfectant that will quickly poison the body. It is for this reason that methanol is present in the fuel commonly known as ‘meths’- ethanol actually produces more energy per gram and makes up 90% of the fuel by volume, but since it is cheaper than most alcoholic drinks the toxic methanol is put in to prevent it being drunk by severely desperate alcoholics. Not that it stops many of them; methanol poisoning is a leading cause of death among many homeless people.

Homeless people were also responsible for a major discovery in the field of alcohol research, concerning the causes of alcoholism. For many years it was thought that alcoholics were purely addicts mentally rather than biologically, and had just ‘let it get to them’, but some years ago a young student (I believe she was Canadian, but certainty of that fact and her name both escape me) was looking for some fresh cadavers for her PhD research. She went to the police and asked if she could use the bodies of the various dead homeless people who they found on their morning beats, and when she started dissecting them she noticed signs of a compound in them that was known to be linked to heroin addiction. She mentioned to a friend that all these people appeared to be on heroin, but her friend said that these people barely had enough to buy drink, let alone something as expensive as heroin. This young doctor-to-be realised she might be onto something here, and changed the focus of her research onto studying how alcohol was broken down by different bodies, and discovered something quite astonishing. Inside serious alcoholics, ethanol was being broken down into this substance previously only linked to heroin addiction, leading her to believe that for some unlucky people, the behaviour of their bodies made alcohol as addictive to them as heroin was to others. Whilst this research has by no means settled the issue, it did demonstrate two important facts; firstly, that whilst alcoholism certainly has some links to mental issues, it is also fundamentally biological and genetic by nature and cannot be solely put down as the fault of the victim’s brain. Secondly, it ‘sciencified’ (my apologies to grammar nazis everywhere for making that word up) a fact already known by many reformed drinkers; that when a former alcoholic stops drinking, they can never go back. Not even one drink. There can be no ‘just having one’, or drinking socially with friends, because if one more drink hits their body, deprived for so long, there’s a very good chance it could kill them.

Still, that’s not a reason to get totally down about alcohol, for two very good reasons. The first of these comes from some (admittely rather spurious) research suggesting that ‘addictive personalities’, including alcoholics, are far more likely to do well in life, have good jobs and overall succeed; alcoholics are, by nature, present at the top as well as the bottom of our society. The other concerns the one bit of science I haven’t tried to explain here- your body is remarkably good at dealing with alcohol, and we all know it can make us feel better, so if only for your mental health a little drink now and then isn’t an all bad thing after all. And anyway, it makes for some killer YouTube videos…

Advertisement

Big Pharma

The pharmaceutical industry is (some might say amazingly) the second largest on the planet, worth over 600 billion dollars in sales every year and acting as the force behind the cutting edge of science that continues to push the science of medicine onwards as a field- and while we may never develop a cure for everything you can be damn sure that the modern medical world will have given it a good shot. In fact the pharmaceutical industry is in quite an unusual position in this regard, forming the only part of the medicinal public service, and indeed any major public service, that is privatised the world over.

The reason for this is quite simply one of practicality; the sheer amount of startup capital required to develop even one new drug, let alone form a public service of this R&D, would feature in the hundreds of millions of dollars, something that no government would be willing to set aside for a small immediate gain. All modern companies in the ‘big pharma’ demographic were formed many decades ago on the basis of a surprise cheap discovery or suchlike, and are now so big that they are the only people capable of fronting such a big initial investment. There are a few organisations (the National Institute of Health, the Royal Society, universities) who conduct such research away from the private sectors, but they are small in number and are also very old institutions.

Many people, in a slightly different field, have voiced the opinion that people whose primary concern is profit are those we should least be putting in charge of our healthcare and wellbeing (although I’m not about to get into that argument now), and a similar argument has been raised concerning private pharmaceutical companies. However, that is not to say that a profit driven approach is necessarily a bad thing for medicine, for without it many of the ‘minor’ drugs that have greatly improved the overall healthcare environment would not exist. I, for example, suffer from irritable bowel syndrome, a far from life threatening but nonetheless annoying and inconvenient condition that has been greatly helped by a drug called mebeverine hydrochloride. If all medicine focused on the greater good of ‘solving’ life-threatening illnesses, a potentially futile task anyway, this drug would never have been developed and I would be even more hateful to my fragile digestive system. In the western world, motivated-by-profit makes a lot of sense when trying to make life just that bit more comfortable. Oh, and they also make the drugs that, y’know, save your life every time you’re in hospital.

Now, normally at this point in any ‘balanced argument/opinion piece’ thing on this blog, I try to come up with another point to try and keep each side of the argument at an about equal 500 words. However, this time I’m going to break that rule, and jump straight into the reverse argument straight away. Why? Because I can genuinely think of no more good stuff to say about big pharma.

If I may just digress a little; in the UK & USA (I think, anyway) a patent for a drug or medicine lasts for 10 years, on the basis that these little capsules can be very valuable things and it wouldn’t do to let people hang onto the sole rights to make them for ages. This means that just about every really vital lifesaving drug in medicinal use today, given the time it takes for an experimental treatment to become commonplace, now exists outside its patent and is now manufactured by either the lowest bidder or, in a surprisingly high number of cases, the health service itself (the UK, for instance, is currently trying to become self-sufficient in morphine poppies to prevent it from having to import from Afghanistan or whatever), so these costs are kept relatively low by market forces. This therefore means that during their 10-year grace period, drugs companies will do absolutely everything they can to extort cash out of their product; when the antihistamine drug loratadine (another drug I use relatively regularly, it being used to combat colds) was passing through the last two years of its patent, its market price was quadrupled by the company making it; they had been trying to get the market hooked onto using it before jacking up the prices in order to wring out as much cash as possible. This behaviour is not untypical for a huge number of drugs, many of which deal with serious illness rather than being semi-irrelevant cures for the snuffles.

So far, so much normal corporate behaviour. Reaching this point, we must now turn to consider some practices of the big pharma industry that would make Rupert Murdoch think twice. Drugs companies, for example, have a reputation for setting up price fixing networks, many of which have been worth several hundred million dollars. One, featuring what were technically food supplements businesses, subsidiaries of the pharmaceutical industry, later set the world record for the largest fines levied in criminal history- this a record that persists despite the fact that the cost of producing the actual drugs themselves (at least physically) rarely exceeds a couple of pence per capsule, hundreds of times less than their asking price.

“Oh, but they need to make heavy profits because of the cost of R&D to make all their new drugs”. Good point, well made and entirely true, and it would also be valid if the numbers behind it didn’t stack up. In the USA, the National Institute of Health last year had a total budget of $23 billion, whilst all the drug companies in the US collectively spent $32 billion on R&D. This might seem at first glance like the private sector has won this particular moral battle; but remember that the American drug industry generated $289 billion in 2006, and accounting for inflation (and the fact that pharmaceutical profits tend to stay high despite the current economic situation affecting other industries) we can approximate that only around 10% of company turnover is, on average, spent on R&D. Even accounting for manufacturing costs, salaries and such, the vast majority of that turnover goes into profit, making the pharmaceutical industry the most profitable on the planet.

I know that health is an industry, I know money must be made, I know it’s all necessary for innovation. I also know that I promised not to go into my Views here. But a drug is not like an iPhone, or a pair of designer jeans; it’s the health of millions at stake, the lives of billions, and the quality of life of the whole world. It’s not something to be played around with and treated like some generic commodity with no value beyond a number. Profits might need to be made, but nobody said there had to be 12 figures of them.