One Foot In Front Of The Other

According to many, the thing that really sets human beings apart from the rest of the natural world is our mastery of locomotion; the ability to move faster, further and with heavier loads than any other creature typically does (never mind that our historical method of doing this was strapping several other animals to a large heap of wood and nails) across every medium our planet has to throw at us; land, sky, sea, snow, whatever. Nowadays, this concept has become associated with our endeavours in powered transport (cars, aeroplanes and such), but the story of human locomotion begins with a far more humble method of getting about that I shall dedicate today’s post to; walking.

It is thought that the first walkers were creatures that roughly approximate to our modern-day crustaceans; the early arthropods. In the early days of multicellular life on earth, these creatures ruled the seas (where all life had thus far been based) and fossils of the time show a wide variety of weird and wonderful creatures. The trilobites that one can nowadays buy as tourist souvenirs in Morocco are but one example; the top predators of the time were massive things, measuring several metres in length with giant teeth and layers of armour plate. All had bony exoskeletons, like the modern insects that are their descendants, bar a few small fish-like creatures a few millimetres in length who had developed the first backbones; in time, the descendants of these creatures would come to dominate life on earth. Since it was faster and allowed a greater range of motion, most early arthropods swam to get about; but others, like the metre-long Brontoscorpio (basically a giant underwater scorpion) preferred the slightly slower, but more efficient, idea of walking about on the seabed. Here, food was relatively plentiful in the form of small ‘grazers’ and attempting to push oneself through the water was wasteful of energy compared to trundling along the bottom. However, a new advantage also presented itself before too long; these creatures were able to cross land over short distances to reach prey- by coincidence, their primitive ‘lungs’ (that collected dissolved oxygen from water in much the same fashion as modern fish gills, but with a less fragile structure) worked just as well at harvesting oxygen from air as water, enabling them to survive on land. As plant life began to venture out onto land to better gain access to the air and light needed to survive, so the vertebrates (in the form of early amphibians) and arthropods began to follow the food, until the land was well and truly colonised by walking life forms.

Underwater, walking was significantly easier than on land; water is a far more dense fluid than air (hence why we can swim in the former but not the latter), and the increased buoyancy this offered meant that early walkers’ legs did not have to support so much of their body’s weight as they would do on land. This made it easier for them to develop the basic walking mechanic; one foot (or whatever you call the end of a scorpion’s leg) is pressed against the ground, before being held stiff and solid as the rest of the body is rotated around it’s joint, moving the creature as a whole forward slightly as it pivots. In almost all invertebrates, and early vertebrates, the creature’s legs are positioned at the side of the body, meaning that as the creature walks they tend to swing from side to side. Invertebrates typically partially counter this problem by having a lot of legs and stepping them in such an order to help them travel in a constant direction, and by having multi-jointed legs that can flex and translate the lateral components of motion into more forward-directed movement, preventing them from swinging from side to side. However, this doesn’t work so well at high speed when the sole priority is speed of movement of one’s feet, which is why most reconstructions of the movement of vertebrates circa 300 million years ago (with just four single-jointed legs stuck out to the side of the body) tends to show their body swinging dramatically from side to side, spine twisting this way and that.  This all changed with the coming of the dinosaurs, whose revolutionary evolutionary advantage was a change in construction of the hip that allowed their legs to point underneath the body, rather than sticking out at the side. Now, the pivoting action of the leg produces motion in the vertical, rather than horizontal direction, so no more spine-twisting mayhem. This makes travelling quickly easier and allows the upper body to be kept in a more stable position, good for striking at fleeing prey, as well as being more energy efficient. Such an evolutionary advantage would soon prove so significant that, during the late Triassic period, it allowed dinosaurs to completely take over from the mammal-like reptiles who had previously dominated the world. It would take more than 150 million years, a hell of a lot of evolution and a frickin’ asteroid to finally let these creatures’ descendants, in the form of mammals, finally prevail over the dinosaurs (by which time they had discovered the whole ‘legs pointing down’ trick).

When humankind were first trying to develop walking robots in the mid-twentieth century, the mechanics of the process were poorly understood, and there are a great many funny videos of prototype sets of legs completely failing. These designers had been operating under the idea that the role of the legs when walking was not just to keep a body standing up, but also to propel them forward, each leg pulling on the rest of the body when placed in front. However, after a careful study of new slow-motion footage of bipedal motion, it was realised that this was not the case at all, and we instead have gravity to thank for pushing us forward. When we walk, we actually lean over our frontmost foot, in effect falling over it before sticking our other leg out to catch ourselves, hence why we tend to go face to floor if the other leg gets caught or stuck. Our legs only really serve to keep us off the ground, pushing us upwards so we don’t actually fall over, and our leg muscles’ function here is to simply put each foot in front of the other (OK, so your calves might give you a bit of an extra flick but it’s not the key thing). When we run or climb, our motion changes; our legs bend, before our quadriceps extend them quickly, throwing us forward. Here we lean forward still further, but this is so that the motion of our quads is directed in the forward, rather than upward direction. This form of motion is less energy efficient, but covers more ground. This is the method by which we run, but does not define running itself; running is simply defined as the speed at which every step incorporates a bit of time where both feet are off the ground. Things get a little more complicated when we introduce more legs to the equation; so for four legged animals, such as horses, there are four footspeeds. When walking there are always three feet on the ground at any one time, when trotting there are always two, when cantering at least one, and when galloping a horse spends the majority of its time with both feet off the ground.

There is one downside to walking as a method of locomotion, however. When blogging about it, there isn’t much of a natural way to end a post.

Advertisement

The Pursuit of Speed

Recent human history has, as Jeremy Clarkson constantly loves to point out, been dominated by the pursuit of speed. Everywhere we look, we see people hurrying hither and thither, sprinting down escalators, transmitting data at next to lightspeed via their phones and computers, and screaming down the motorway at over a hundred kilometres an hour (or nearly 100mph if you’re the kind of person who habitually uses the fast lane of British motorways). Never is this more apparent than when you consider our pursuit of a new maximum, top speed, something that has, over the centuries, got ever higher and faster. Even in today’s world, where we prize speed of information over speed of movement, this quest goes on, as evidenced by the team behind the ‘Bloodhound’ SSC, tipped to break the world land speed record. So, I thought I might take this opportunity to consider the history of our quest for speed, and see how it has developed over time.

(I will ignore all unmanned human exploits for now, just so I don’t get tangled up in arguments concerning why a satellite may be considered versus something out of the Large Hadron Collider)

Way back when we humans first evolved into the upright, bipedal creatures we are now, we were a fairly primitive race and our top speed was limited by how fast we could run.  Usain Bolt can, with the aid of modern shoes, running tracks and a hundred thousand people screaming his name, max out at around 13 metres per second. We will therefore presume that a fast human in prehistoric times, running on bare feet, hard ground, and the motivation of being chased by a lion, might hit 11m/s, or 43.2 kilometres per hour. Thus our top speed remained for many thousands of years, until, around 6000 years ago, humankind discovered how to domesticate animals, and more specifically horses, in the Eurasian Steppe. This sent our maximum speed soaring to 70km/h or more, a speed that was for the first time sustainable over long distances, especially on the steppe where horses where rarely asked to tow or carry much. Thus things remained for another goodly length of time- in fact, many leading doctors were of the opinion that travelling any faster would be impossible to do without asphyxiating. However, come the industrial revolution, things started to change, and records began tumbling again. The train was invented in the 1800s and quickly transformed from a slow, lumbering beast into a fast, sleek machine capable of hitherto unimaginable speed. In 1848, the Iron Horse took the land speed record away from its flesh and blood cousin, when a train in Boston finally broke the magical 60mph (ie a mile a minute) barrier to send the record shooting up to 96.6 km/h. Records continued to tumble for the next half-century, breaking the 100 mph barrier by 1904, but by then there was a new challenger on the paddock- the car. Whilst early wheel-driven speed records had barely dipped over 35mph, after the turn of the century they really started to pick up the pace. By 1906, they too had broken the 100mph mark, hitting 205km/h in a steam-powered vehicle that laid the locomotives’ claims to speed dominance firmly to bed. However, this was destined to be the car’s only ever outright speed record, and the last one to be set on the ground- by 1924 they had got up to 234km/h, a record that stands to this day as the fastest ever recorded on a public road, but the First World War had by this time been and gone, bringing with it a huge advancement in aircraft technology. In 1920, the record was officially broken in the first post-war attempt, a French pilot clocking 275km/h, and after that there was no stopping it. Records were being broken left, right and centre throughout both the Roaring Twenties and the Great Depression, right up until the breakout of another war in 1939. As during WWI, all records ceased to be officiated for the war’s duration, but, just as the First World War allowed the plane to take over from the car as the top dog in terms of pure speed, so the Second marked the passing of the propellor-driven plane and the coming of the jet & rocket engine. Jet aircraft broke man’s top speed record just 5 times after the war, holding the crown for a total of less than two years, before they gave it up for good and let rockets lead the way.

The passage of records for rocket-propelled craft is hard to track, but Chuck Yeager in 1947 became the first man ever to break the sound barrier in controlled, level flight (plunging screaming to one’s death in a deathly fireball apparently doesn’t count for record purposes), thanks not only to his Bell X-1’s rocket engine but also the realisation that breaking the sound barrier would not tear the wings of so long as they were slanted back at an angle (hence why all jet fighters adopt this design today). By 1953, Yeager was at it again, reaching Mach 2.44 (2608km/h) in the X-1’s cousing, the X-1A. The process, however, nearly killed him when he tilted the craft to try and lose height and prepare to land, at which point a hitherto undiscovered phenomenon known as ‘inertia coupling’ sent the craft spinning wildly out of control and putting Yeager through 8G’s of force before he was able to regain control. The X-1’s successor, the X-2, was even more dangerous- despite pushing the record up to first 3050km/h  one craft exploded and killed its pilot in 1953, before a world record-breaking flight reaching Mach 3.2 (3370 km/h), ended in tragedy when a banking turn at over Mach 3 sent it into another inertia coupling spin that resulted, after an emergency ejection that either crippled or killed him, in the death of pilot Milburn G. Apt. All high-speed research aircraft programs were suspended for another three years, until experiments began with the Bell X-15, the latest and most experimental of these craft. It broke the record 5 times between 1961 and 67, routinely flying above 6000km/h, before another fatal crash, this time concerning pilot Major Michael J Adams in a hypersonic spin, put paid to the program again, and the X-15’s all-time record of 7273km/h remains the fastest for a manned aircraft. But it still doesn’t take the overall title, because during the late 60s the US had another thing on its mind- space.

Astonishingly, manned spacecraft have broken humanity’s top speed record only once, when the Apollo 10 crew achieved the fastest speed to date ever achieved by human beings relative to Earth. It is true that their May 1969 flight did totally smash it, reaching 39 896km/h on their return to earth, but all subsequent space flights, mainly due to having larger modules with greater air resistance, have yet to top this speed. Whether we ever will or not, especially given today’s focus on unmanned probes and the like, is unknown. But people, some brutal abuse of physics is your friend today. Plot all of these records on a graph and add a trendline (OK you might have to get rid of the horse/running ones and fiddle with some numbers), and you have a simple equation for the speed record against time. This can tell us a number of things, but one is of particular interest- that, statistically, we will have a man travelling at the speed of light in 2177. Star Trek fans, get started on that warp drive…

Why we made the bid in the first place

…and now we arrive at the slack time, that couple of weeks between the end of the Olympics and start of the Paralympics where everyone gets a chance to relax, wind down a little, and take time away from being as resolutely enthusiastic and patriotic as we have been required to for the last two weeks (or a lot longer if you factor in the Royal Wedding and Queen’s Jubilee). However, it’s also an undoubtedly good time to reflect on what have been, whatever your viewpoint, a very eventful last couple of weeks.

To my mind, and certainly to those of the Olympic organisers, these games have been a success. Whether you feel that it was all a colossal waste of money (although how anyone can think that of an event featuring the Queen parachuting out of a helicopter alongside James Bond is somewhat puzzling to me), or the single most amazing thing to grace the earth this side of its existence (in which case you could probably do with a nice lie down at the very least), its motto has been to ‘Inspire a Generation’. From a purely numerical perspective, it appears to have worked- sports clubs of all sorts up and down the land, even in niche areas such as handball, have been inundated with requests from enthusiastic youngsters after membership, and every other sentence among BBC pundits at the moment appears to include the phrase ‘the next Mo Farah/Usain Bolt/Ben Ainslie/Chris Hoy’ (delete as applicable).

However, I think that in this respect they are missing the point slightly, but to explain what I mean I’m going to have to go on a bit of a tangent. Trust me, it’ll make sense by the end.

So…, what is the point of sport? This has always been a tricky one to answer, the kind of question posed by the kind of awkward people who are likely to soon find an answer flying swiftly towards them in foot-shaped form. In fact, I have yet to hear a convincing argument as to exactly why we watch sport, apart from that it is for some unexplained reason compelling to do so. But even if we stick to the act of participation, why do we bother?

Academics and non-sportspeople have always had a whole host of reasons why not, ever since the days that they were the skinny, speccy one last to be picked in the dreaded playground football lineup (I’ve been there- not fun). Humans are naturally lazy (an evolutionary side-effect of using our brains rather than brawn to get ahead), and the idea of running around a wet, muddy field expending a lot of precious energy for no immediately obvious reason is obviously unappealing. Then we consider that the gain of sport, the extent to which it contributes to making the world a better place is, in material terms at least, apparently quite small. Humankind’s sporting endeavours use up a lot of material for equipment, burn a lot of precious calories that could be used elsewhere around the world to help the starving, and often demand truly vast expenses in terms of facilities and, in the professional world, salaries. Even this economic consideration does not take into account the loss in income presented by the using up of acres upon acres of valuable land for sports facilities and pitches. Sport also increases the danger factor of our lives, with a heavy risk of injury ranging from minor knocks to severe, debilitating disabilities (such as spinal injury), all of which only adds to the strain on health services worldwide and further increases the ‘cost’ of sport to the world.

So why do we bother with it at all? Why is it that the question governments are asking themselves is “why aren’t enough kids playing sport?” rather than ‘why are so many of them doing so’? Simple reason is that, from every analytical perspective, the benefits of sport far outweigh the costs. 10% of the NHS’ entire budget is spent on dealing with diabetes, just one of a host of health problems associated with obesity, and if just half of these cases were to disappear thanks to a healthier lifestyle it would free up around an extra £5 billion- by 2035, diabetes could be costing the country around £17 billion unless something changes. Then there are the physical benefits of sport, the stuff it enables us to do. In the modern world being able to run a kilometre and a half in four minutes might seem like a pointless skill, but when you’re being chased down the street by a potential mugger (bad example I know, but it’ll do) then you’d definitely rather be a fit, athletic runner than slow, lumbering and overweight. Sport is also one of the largest commercial industries on earth, if not on a professional level then at least in terms of manufacture and sale of equipment and such, worth billions worldwide each year and providing many thousands or even millions of jobs (although some of the manufacturing does admittedly have a dubious human rights record). The health benefits of sport go far beyond the physical & economic too, as both the endorphins released during physical activity and the benefits of a healthy lifestyle are known to increase happiness & general well-being, surely the ultimate goals of all our lives. But perhaps most valuable of all is the social side of sport. Whilst some sports (or, more specifically, some of the &%^$£*)@s involved) have a reputation for being exclusive and for demoralising hopeful youngsters, sport when done properly is a powerful force for social interaction & making friends, as well as being a great social equaliser. As old Etonian, heir his father’s baronet and Olympic 110m hurdles finalist Lawrence Clarke recently pointed out in an interview ‘On the track it doesn’t matter how rich your family is or where you’ve come from or where you went to school; all that matters is how fast you can get to the finish line’ (I’m paraphrasing, but that was the general gist). Over the years, sport has allowed mixing between people of a myriad of different genders and nationalities, allowing messages of goodwill to spread between them and changing the world’s social and political landscape immeasurably. This Olympics was, for example, the first in which Palestinian and Saudi Arabian women competed, potentially paving the way for increased gender equality in these two countries.

Clearly, when we all get behind it, sport has the power to be an immense tool for good. But notice that nowhere in that argument was any mention made of being the physical best, being on top of the world, breaking world records because, try as one might, the value of such achievement is solely that of entertainment and the odd moment of inspiration. Valuable though those two things surely are, they cannot begin to compare with the incalculable benefits of a population, a country, a world united by sport for the good of us all. So, in many respects, the success of an Olympic games should not be judged by whether it inspires a new superstar, but rather by how it encourages the guy who turns up with him at that first training session, who might never be that good a competitor… but who carries on turning up anyway. The aim of top-flight sport should not be to inspire the best. It should simply be to inspire the average.

Who needs a gym?

This is a post I’ve been trying not to resort to in a while- not because I think the content’s going to be bad or anything, just that it’s a bit of a leap from my usual stuff and because it’s actually going to be a bit too easy. However, given the fact that a) the Euros, Wimbledon and the Olympics are all on over the next month or so, b) my last few posts have been of a sporting persuasion, c) I vaguely know what I’m talking about here and d) I keep forgetting my other ideas, I thought I’d bite the bullet and go for it. So here it is, my first ever advice column for this blog: how to get fit and strong without the use of any gym equipment.

Fitness can be broadly (and fairly inadequately) split into three separate fields: aerobic & cardiovascular, muscular and flexibility. I’ll deal with all three of these separately, and am almost certainly going to have to add another post to fit all of the ‘muscular’ area into, but I’ll start with flexibility.

Some would argue that flexibility is not really part of fitness, and it’s true that, on the surface, it doesn’t appear to fit into our typical classification of the subject. However, it is just as much a matter of our physical ability to perform as any other, and thus probably has the right to be included as part of this list. The main reason I have misgivings about talking about it is simply personal knowledge- I don’t really know any exercises designed to improve flexibility.

However, that doesn’t mean I can’t offer advice on the matter. The first, and simplest, way to improve general flexibility and range of motion is just to get active. Every movement of the joints, be they legs, arms, back or wherever, makes them that tiny bit freer to move over that range and thus a little bit more supple- running, cycling, whatever. It is partly for this reason too that it is important to warm up and stretch prior to exercise- by extending the muscles longer than they are naturally used to, then they are prepared for that greater range of movement and are thus capable of easily moving across the more limited range that general exercise demands. Perhaps the easiest ‘flexibility exercise’ one can do is tree climbing  (which also happens to be endlessly entertaining if you can find some good trees), but stuff like yoga can be learnt without too much difficulty from the internet if you’re serious about improving your flexibility. Otherwise, I would suggest joining an appropriate club. Doesn’t have to be yoga or gymnastics or anything quite so extensive- martial arts (my personal preference, and a superb full-body endurance exercise) and rock climbing (which will build forearms and biceps the size of Mercury) are great for teaching your body a whole new way of moving, and are also a lot more fun for the casual enthusiast.

OK, now onto something I can actually talk about with some authority: aerobic and cardiovascular fitness. The goal when training cardio is simply to get the heart pumping- cardiac muscle works like any other muscle in that it can be built by straining it, breaking muscle fibres and having the body re-knit them into a bigger, stronger structure capable of doing more. Cardiovascular training should ideally be done at a rate upwards of 160 bpm (heartbeats per minute), but if you’re struggling to get into exercising then it’s best to start off with a more casual workout. Regular walking can quickly burn off excess fat and build up at least preliminary fitness (although be warned- to be most effective one should aim for a rate of around 120 steps per minute, or less if you’re struggling to keep that pace up, for at least 20 minutes. Bring an iPod too stave off boredom). The average resting heart rate of a person is somewhere around 70bpm- if yours is anything below 80 or so (measure it at home by counting the number of thumps on the left of one’s chest over the space of a minute) and you’re relatively serious about getting fit, then it’s best to step up a gear.

Just about any activity that gets the heart racing (remember- 160bpm minimum, 180 as a target) is suitable for increasing cardio fitness, be it running, cycling, swimming, rowing, football, rugby or whatever else you can think of- the only important thing is to try and keep the motion fast. Running or cycling on a machine (if you have access to one) will make it easier to keep up a pace (since air resistance is decreased), but reduces your workload, meaning less muscle is built on the legs and the effectiveness of the exercise is reduced, meaning you have to work out for longer. Rowing is an especially good exercise for both you muscles and your cardio, but access to a machine can be problematic. Oh, and a word of warning about swimming- whilst it’s a great full-body workout and can really improve your speed, it’s only going to be as effective as a good run or cycle if done at a fast pace, for quite a long time; moderate speeds won’t cut it.

You don’t have to judge one’s activity by heartbeat, as this can be understandably tricky if you’re pounding along a road, but learn to get a feel for your intensity levels. A low intensity, when you’re still able to comfortably breathe and speak (so about up to a fast walk), is a little too slow for proper aerobic work- moderate, where you can feel the breath coming hard but can still speak about normally, is fine for aerobic work over sets of about 20 minutes or longer- but keep going for as long as you can/have the time for. High-intensity work is you going flat out, where speaking becomes next to impossible. It’s probably best left until you’ve achieved a good level of fitness, but if you can manage it then just short bursts of less than 8 minutes (which is about how long you should be able to keep it up) just a few times a week can reap rewards.

A final thing about cardio, before I devote Wednesday’s post to the nitty gritty of muscular workouts- it’s at its most enjoyable when done as part of a sport. Pounding round the roads on a daily jog is almost certainly going to be a more effective workout, and if you’re really looking to seriously improve your fitness then it’s probably more the way to go- but the attraction can quickly fall away in the face of a damp Wednesday when you’re nursing a calf strain. But sport is without a doubt the best way to build up a good level of fitness and strength, make a few mates and have some fun in the process. Some are better than others- boxing is the single best activity for anyone after a cardiovascular workout, whilst something like golf doesn’t really count as exercise- but there’s something for everyone out there, if you know where to look.

Now, to plan a muscular workout for next time…

What good are Olympians?

In my last post I talked about the Euro 2012 football tournament, an event that no European could hope to ignore unless they lived in a particularly well-soundproofed cave. The event I’m going to talk about today however, has a strange power akin to osmosis meaning that it is physically impossible to avoid hearing about it from any distance less than 50 miles from any living being or, if you live in Britain, the centre of the earth. It is, of course, the London 2012 Olympics.

Olympians are, of course, the pinnacle of human physical perfection- or so we keep on being told, despite Usain Bolt’s famous obsession with chicken nuggets. In fact, it can be hard, on occasion, to believe just how amazing Olympians are meant to be. This is especially true given the amount of media attention they have attracted in recent times presenting them as ‘just normal people’, involving talks with their families and discussions of their home lives and ‘normalness’.

To an extent, some of their achievements don’t seem to be super-amazing either, when you think about it. Usain Bolt is a prime example- the man is the fastest on earth and is able to cover 100 metres in a little under 10 seconds.  This, we are told, is amazingly exceptional- despite the fact that anyone watching athletics willquickly notice a far larger number of people all able to run the same distance in less than a second more time. Then there are the dozens of other amateur or schoolboy sprinters, and fast sportsmen such as rugby wingers, who are able to do their 100 in around 11 seconds- in fact one England Sevens player (Dan Norton) has been clocked as quicker than Bolt over 20 minutes, and as a sportsman rather than athlete probably has a broader range of physical skills than him. Admittedly, most of us are probably not going to come close to any of that- but the fastest guy any given person knows is likely to be able to cover 100m in around 12 seconds, despite probably having no formal sprint training and not dedicating their lives to running very quickly in a straight line for an incredibly short period of time, which is perhaps not the most versatile of life skills.

A similar idea can be applied to quite a range of Olympic fields. Most people who keep themselves fit and lead an at least reasonably active lifestyle could cover 400m in around a minute with a little practice, so perhaps covering it in 45 seconds is not something super-amazing. I am not an especially serious rower, but I use a machine occasionally and can clock a time over 2000m of around 7:30- just a minute slower than the men’s world record on-water time for single sculls, and only 2 minutes slower than the record for a machine. A lot of blokes in the pub would consider themselves enough of a dab hand in a fight to be an at least reasonable boxer with a bit of training, and amateur boxers can’t be all that amazing can they? And have you seen the bows they use for archery? They make a laser sniper rifle look like a nerf gun- anyone could hit a target with one of those, surely?

And that’s before you even consider the practical implications of what it means to be an Olympian- I’ll use handball as an example. Up until winning the bid for the 2012 games, Britain had never had a handball team, and after the people who run these things had insisted that Team GB would enter a competitor in every event they had to produce an acceptable outfit within 4 years. This meant recruiting from people who’d already played high level sport (which mainly ended up being rugby players and basketballers) and retraining them as handballers. This required them all to spend countless weeks at special training camps. Most of them had to give up their jobs and entire lives for a worse-paid job with poorer facilities, all in pursuit of their one shot at the Olympics. As far as I know, they have yet to win a game. Surely a balanced life, sampling all there is of the human experience, makes one a better person than this relentlessly single-minded devotion?

Well… maybe, but to sell the achievements of an Olympian short is to seriously devalue them. True, in some events the differences between amateur and world-leading may not be huge, but in others the difference can be truly staggering. Consider distance running- I consider myself to be a reasonably fit guy, and go running of occasion around a 4-mile (6.4 km) course near where I live. There’s the odd small hill, but the majority of it is flat. I can cover that course in about half an hour, by the end of which I am usually sweating like a paedo in a nursery (my apologies for the rather crude expression). However, the other day a news item I saw featured a 10km event in which a few soon to be Olympians were taking part. Bear in mind that this course was over half as long again as mine… and yet they covered it in three minutes less time than I could my course. And they barely looked tired. Worse still, at my rate of running it would take me around three and a quarter hours (assuming I could somehow replicate my pace for six and a half times the distance) to complete a marathon, whereas even a mediocre Olympic marathon runner would expect to hit just two. Usain Bolt can typically keep a top speed of around 12 metres per second up for around 4 or 5 seconds, whilst a marathon runner can keep up six for hours on end. Consider events such as the javelin- they might look all light and easy to throw, but from experience trust me, they’re not. I can get one perhaps 15 metres- an Olympian six times that distance. In a long jump, most of us would struggle to exceed a metre or two, whereas the poorest Olympian jumper can hit six or seven with ease.

In these events the gulf in ability between an Olympian and a mere mortal is obvious- but do not be mistaken. That difference in terms of sheer class is present in every single Olympic discipline, and every athlete attending the games in London this year represents a world leader in their field. The Olympics is a showcase of the top 0.01% of the human race, and just how amazing we can be- and they deserve every ounce of admiration and respect that they get.