The Science of Iron

I have mentioned before that I am something of a casual gymgoer- it’s only a relatively recent hobby, and only in the last couple of months have I given any serious thought and research to my regime (in which time I have also come to realise that some my advice in previous posts was either lacking in detail or partially wrong- sorry, it’s still basically useful). However, whilst the internet is, as could be reasonably expected, inundated with advice about training programs, tips on technique & exercises to work different muscle groups (often wildly disagreeing with one another), there is very little available information concerning the basic science behind building muscle- it’s just not something the average gymgoer knows. Since I am fond of a little research now and then, I thought I might attempt an explanation of some of the basic biology involved.

DISCLAIMER: I am not a biologist, and am getting this information via the internet and a bit of ad libbing, so don’t take this as anything more than a basic guideline

Everything in your body is made up of tiny, individual cells, each a small sac consisting of a complex (and surprisingly ‘intelligent’) membrane, a nucleus to act as its ‘brain’ (although no-one is entirely sure exactly how they work) and a lot of watery, chemical-y stuff called cytoplasm squelching about and reacting with things. It follows from this that to increase the size of an organ or tissue requires these cells to do one of two things; increase in number (hyperplasia) or in size (hypertrophy). The former case is mainly associated with growths such as neoplasia (tumours), and has only been shown to have an impact on muscles in response to the injection of growth hormones, so when we’re talking about strength, fitness and muscle building we’re really interested in going for hypertrophy.

Hypertrophy itself is still a fairly broad term biologically, and only two aspects of it are interesting from an exercise point of view; muscular and ventricular hypertrophy. As the respective names suggest, the former case relates to the size of cells in skeletal muscle increasing, whilst the latter is concerned with the increase in size & strength of the muscles making up the walls of the heart (the largest chambers of which are called the ventricles). Both are part of the body’s long-term response to exercise, and for both the basic principle is the same- but before I get onto that, a quick overview of exactly how muscles work may be in order.

A muscle cell (or muscle fibre) is on of the largest in the body, vaguely tubular in shape and consisting in part of many smaller structures known as myofibrils (or muscle fibrils). Muscle cells are also unusual in that they contain multiple cell nuclei, as a response to their size & complex function, and instead of cytoplasm contain another liquid called sarcoplasm (more densely packed with glycogen fuel and proteins to bind oxygen, and thus enabling the muscles to respire more quickly & efficiently in response to sudden & severe demand). These myofibrils consist of multiple sections called myofilaments, (themselves made of a family of proteins called myosins) joined end-to-end as repeating units known as sarcomeres. This structure is only present in skeletal, rather than smooth muscle cells (giving the latter a more regular, smoothly connected structure when viewed under the microscope, hence the name) and are responsible for the increased strength available to skeletal muscles. When a muscle fibril receives an electrical impulse from the brain or spinal cord, certain areas or ‘bands’ making up the sarcomeres shrink in size, causing the muscle as a whole to contract. When the impulse is removed, the muscle relaxes; but it cannot extend itself, so another muscle working with it in what is known as an antagonistic pair will have to pull back on it to return it to its original position.

Now, when that process is repeated a lot in a small time frame, or when a large load is placed on the muscle fibre, the fibrils can become damaged. If they are actually torn then a pulled muscle results, but if the damage is (relatively) minor then the body can repair it by shipping in more amino acids (the building blocks of the proteins that make up our bodies) and fuel (glycogen and, most importantly, oxygen). However, to try and safeguard against any future such event causing damage the body does its bit to overcompensate on its repairs, rebuilding the protein structures a little more strongly and overcompensating for the lost fuel in the sarcoplasm. This is the basic principle of muscular hypertrophy; the body’s repair systems overcompensating for minor damage.

There are yet more subdivisions to consider, for there are two main types of muscular hypertrophy. The first is myofibrillated hypertrophy, concerning the rebuilding of the myofibrils with more proteins so they are stronger and able to pull against larger loads. This enables the muscle to lift larger weights & makes one stronger, and is the prominent result of doing few repetitions of a high load, since this causes the most damage to the myofibrils themselves. The other type is sarcoplasmic hypertrophy, concerning the packing of more sarcoplasm into the muscle cell to better supply the muscle with fuel & oxygen. This helps the muscle deal better with exercise and builds a greater degree of muscular endurance, and also increases the size of the muscle, as the increased liquid in it causes it to swell in volume. It is best achieved by doing more repetitions on a lower load, since this longer-term exercise puts more strain on the ability of the sarcoplasm to supply oxygen. It is also advisable to do fewer sets (but do them properly) of this type of training since it is more tiring; muscles get tired and hurt due to the buildup of lactic acid in them caused by an insufficient supply of oxygen requiring them to respire anaerobically. This is why more training on a lower weight feels like harder work, but is actually going to be less beneficial if you are aiming to build muscular strength.

Ventricular (or cardiac) hypertrophy combines both of these effects in a response to the increased load placed on the muscles in the heart from regular exercise. It causes the walls of the ventricles to thicken as a result of sarcoplasmic hypertrophy, and also makes them stronger so that the heart has to beat less often (but more powerfully) to supply blood to the body. In elite athletes, this has another effect; in response to exercise the heart’s response is not so much to beat more frequently, but to do so more strongly, swelling more in size as it pumps to send more blood around the body with each beat. Athletic heart syndrome, where the slowing of the pulse and swelling of heart size are especially magnified, can even be mistaken for severe heart disease by an ill-informed doctor.

So… yeah, that’s how muscle builds (I apologise, by the way, for my heinous overuse of the word ‘since’ in the above explanation). I should point out quickly that this is not a fast process; each successive rebuilding of the muscle only increases the strength of that muscle by a small amount, even for serious weight training, and the body’s natural tendency to let a muscle degrade over time if it is not well-used means that hard work must constantly be put in to maintain the effect of increased muscular size, strength and endurance. But then again, I suppose that’s partly what we like about the gym; the knowledge that we have earned our strength, and that our willingness to put in the hard work is what is setting us apart from those sitting on the sofa watching TV. If that doesn’t sound too massively arrogant.

Advertisement

Icky stuff

OK guys, time for another multi-part series (always a good fallback when I’m short of ideas). Actually, this one started out as just an idea for a single post about homosexuality, but when thinking about how much background stuff I’d have to stick in for the argument to make sense, I thought I might as well dedicate an entire post to background and see what I could do with it from there. So, here comes said background: an entire post on the subject of sex.

The biological history of sex must really start by considering the history of biological reproduction. Reproduction is a vital part of the experience of life for all species, a necessary feature for something to be classified ‘life’, and among some thinkers is their only reason for existence in the first place. In order to be successful by any measure, a species must exist; in order to exist, those of the species who die must be replaced, and in order for this to occur, the species must reproduce. The earliest form of reproduction, occurring amongst the earliest single-celled life forms, was binary fission, a basic form of asexual reproduction whereby the internal structure of the organism is replicated, and it then splits in two to create two organisms with identical genetic makeup. This is an efficient way of expanding a population size very quickly, but it has its flaws. For one thing, it does not create any variation in the genetics of a population, meaning what kills one stands a very good chance of destroying the entire population; all genetic diversity is dependent on random mutations. For another, it is only really suitable for single-celled organisms such as bacteria, as trying to split up a multi-celled organism once all the data has been replicated is a complicated geometric task. Other organisms have tried other methods of reproducing asexually, such as budding in yeast, but about 1 billion years ago an incredibly strange piece of genetic mutation must have taken place, possibly among several different organisms at once. Nobody knows exactly what happened, but one type of organism began requiring the genetic data from two, rather than one, different creatures, and thus was sexual reproduction, both metaphorically and literally, born.

Just about every complex organism alive on Earth today now uses this system in one form or another (although some can reproduce asexually as well, or self-fertilise), and it’s easy to see why. It may be a more complicated system, far harder to execute, but by naturally varying the genetic makeup of a species it makes the species as a whole far more resistant to external factors such as disease- natural selection being demonstrated at its finest. Perhaps is most basic form is that adopted by aquatic animals such as most fish and lobster- both will simply spray their eggs and sperm into the water (usually as a group at roughly the same time and place to increase the chance of conception) and leave them to mix and fertilise one another. The zygotes are then left to grow into adults of their own accord- a lot are of course lost to predators, representing a huge loss in terms of inputted energy, but the sheer number of fertilised eggs still produces a healthy population. It is interesting to note that this most basic of reproductive methods, performed in a similar matter by plants, is performed by such complex animals as fish (although their place on the evolutionary ladder is both confusing and uncertain), whilst supposedly more ‘basic’ animals such as molluscs have some of the weirdest and most elaborate courtship and mating rituals on earth (seriously, YouTube ‘snail mating’. That shit’s weird)

Over time, the process of mating and breeding in the animal kingdom has grown more and more complicated. Exactly why the male testes & penis and the female vagina developed in the way they did is unclear from an evolutionary perspective, but since most animals appear to use a broadly similar system (males have an appendage, females have a depository) we can presume this was just how it started off and things haven’t changed much since. Most vertebrates and insects have distinct sexes and mate via internal fertilisation of a female’s eggs, in many cases by several different males to enhance genetic diversity. However, many species also take the approach that ensuring they care for their offspring for some portion of their development is a worthwhile trade-off in terms of energy when compared to the advantages of giving them the best possible chance in life. This care generally (but not always, perhaps most notably in seahorses) is the role of the mother, males having usually buggered off after mating to leave mother & baby well alone, and the general ‘attitude’ of such an approach gives a species, especially females, a vested interest in ensuring their baby is as well-prepared as possible. This manifests itself in the process of a female choosing her partner prior to mating. Natural selection dictates that females who pick characteristics in males that result in successful offspring, good at surviving, are more likely to pass on their genes and the same attraction towards those characteristics, so over time these traits become ‘attractive’ to all females of a species. These traits tend to be strength-related, since strong creatures are generally better at competing for food and such, hence the fact that most pre-mating procedures involve a fight or physical contest of some sort between males to allow them to take their pick of available females. This is also why strong, muscular men are considered attractive to women among the human race, even though these people may not always be the most suitable to father their children for various reasons (although one could counter this by saying that they are more likely to produce children capable of surviving the coming zombie apocalypse). Sexual selection on the other hand is to blame for the fact that sex is so enjoyable- members of a species who enjoy sex are more likely to perform it more often, making them more likely to conceive and thus pass on their genes, hence the massive hit of endorphins our bodies experience both during and post sexual activity.

Broadly speaking then, we come to the ‘sex situation’ we have now- we mate by sticking penises in vaginas to allow sperm and egg to meet, and women generally tend to pick men who they find ‘attractive’ because it is traditionally an evolutionary advantage, as is the fact that we find sex as a whole fun. Clearly, however, the whole situation is a good deal more complicated than just this… but what is a multi parter for otherwise?

Fist Pumping

Anyone see the Wimbledon final yesterday? If not, you missed out- great game of tennis, really competitive for the first two sets, and Roger Federer showing just why he is the greatest player of all time towards the end. Tough for Andy Murray after a long, hard tournament, but he did himself proud and as they say: form is temporary, class is permanent. And Federer has some class.

However, the reason I bring this up is not to extol the virtues of a tennis match again (I think my post following Murray’s loss at the Australian Open was enough for that), but because of a feature that, whilst not tennis-specific, appears to be something like home turf for it- the fist pump.

It’s a universally-recognised (from my experience anyway) expression of victory- the clenched fist, raised a little with the bent elbow, used to celebrate each point won, each small victory. It’s an almost laughably recognisable pattern in a tennis match, for whilst the loser of a point will invariably let their hand go limp by their side, or alternatively vent his or her frustration, the winner will almost always change their grip on the racket, and raise one clenched fist in a quiet, individual expression of triumph- or go ape-shit mental in the case of set or match wins.

So then, where does this symbol come from? Why, across the world, is the raised, clenched fist used in arenas ranging from sport to propaganda to warfare as a symbol of victory, be they small or world-changing? What is it that lies behind the fist pump?

Let us first consider the act of a clenched fist itself. Try it now. Go on- clench your fist, hard, maintaining a strong grip. See the knuckles stand out, sense the muscles bulge, feel the forearm stiffen. Now, try to maintain that position. Keep up that strong grip for 30 seconds, a minute, maybe two. After a while, you should feel your grip begin to loosen, almost subconsciously. Try to keep it tight if you can, but soon your forearm will start to ache, grip fading and loosening. It’s OK, you can let go now, but you see the point- maintaining a strong grip is hard old work. Thus, showing a strong grip is symbolic of still having energy, strength to continue, a sign that you are not beaten yet and can still keep on going. This is further accompanied by having the fist in a raised, rather than slack, position, requiring that little bit more effort. Demonstrating this symbol to an opponent after any small victory is almost a way of rubbing their noses in it, a way of saying that whilst they have been humbled, the victor can still keep on going, and is not finished yet.

Then there is the symbolism of the fist as a weapon. Just about every weapon in human history, bar those in Wild Wild West and bad martial arts films, requires the hands to operate it, and our most basic ones (club, sword, mace, axe etc.) all require a strong grip around a handle to use effectively. The fist itself is also, of course, a weapon of sorts in its own right. Although martial artists have taken the concept a stage further, the very origins of human fighting and warfare comes from basic swinging at one another with fists- and it is always the closed fists, using knuckles as the driving weapon, that are symbolic of true hand-to-hand fighting, despite the fact that the most famous martial arts move, the ‘karate chop’ (or knife-hand strike to give it its true name) requires an open hand. Either way, the symbolism and connection between the fist and weaponry/fighting means that the raised fist is representative not only of defiance, of fighting back,  standing tall and being strong against all the other could throw against them (the form in which it was used in large amounts in old Soviet propaganda), but also of dominance, representing the victor’s power and control over their defeated foe, further adding to the whole ‘rubbing their noses in it’ symbolism.

And then there is the position of the fist. Whilst the fist can be and is held in a variety of positions ranging from the full overhead to the low down clench on an extended arm, it is invariably raised slightly when clenched in victory. The movement may only be of a few centimetres, but its significance should not be underestimated- at the very least it brings the arm into a bent position. A bent arm position is the starting point for all punches and strikes, as it is very hard to get any sort of power from a bent arm, so the bending of the arm on the fist clench is once again a connection to the idea of the fist as a weapon. This is reinforced by the upwards motion being towards the face and upper body, as this is the principle target, and certainly the principle direction of movement (groin strikes excepted) in traditional fist fighting. Finally, we have the full lift, fists clenched and raised above the head in the moment of triumph. Here the symbolism is purely positional- the fists raised, especially when compared to the bent neck and hunched shoulders of the defeated compatriot, makes the victor seem bigger and more imposing, looming over his opponent and becoming overbearing and ‘above’ them.

The actual ‘pumping’ action of the fist pump, rarer than the unaccompanied clench,  adds its own effect, although in this case it is less symbolism and more naked emotion on show- not only passion for the moment, but also raw aggression to let one’s opponent know that not only are you up for this, but you are well ready and prepared to front up and challenge them on every level. But this symbolism could be considered to be perhaps for the uncivilised and overemotional, whereas the subtlest, calmest men may content themselves with the tiniest grin and a quick clench, conjuring up centuries of basic symbolism in one tiny, almost insignificant, act of victory.

Part 4… and I think there’s going to be another one…

Part 4 of my series on gym-less workouts should be the last one on that subjects specifically- however, since a related idea has been knocking around my head for a while (since I started this series), I’m going to continue with my running theme of sport n stuffs for at least one more post. Whether I go on for even longer than that is entirely up to whether I can think of enough material for it, and whether I think it’s got boring.

But first, my final two exercises:

FOREARMS
Where:  Er… on your forearms. As in the bit between hand and elbow. Something that not a lot of people know about the forearms is that their main function is not in fact to move the wrist (although they do do that), but to control the hand and fingers (which contain no muscles of their own due to lack of space, but connect to small muscles in the forearm). As such, they are responsible for the strength of your grip.
Exercise: Grip strength is a very important part of a lot of everyday and workout exercises- one of the most common beneficiaries is pull-ups, so doing those will build your forearms a little. However, to work them more specifically (and make pull-ups of all kinds an easier process), you basically need to find a way of gripping something against resistance. If you really want, you can buy these things consisting of two handles with a spring in between them that you clench and unclench, but I’m sticking to non-equipment exercises here. You can just find something to grab hold of and repeatedly clench and unclench against it, but for more satisfying results just take any heavy object with a handle- if you happen to have a shopping bag that does not lacerate your fingers, that’s perfect, but a handle at the top of a rucksack will work too. Hang the handle from outstretched fingers, and simply repeatedly clench and relax your hand. Best of all, this is the kind of thing you can do casually on the way home from the shops, meaning you don’t have to set aside time to work it out. Forearms are perhaps not the most crucial muscle group, but they are useful nonetheless and, given that they are really easy to work, you’d be pretty dumb not to.

FULL BODY
Where: …come on, really? I mean really?
Exercise: Many serious gym-goers don’t really believe in full-body workouts other than as a fitness technique, and next to none would be able to name on for working all of the body’s muscles. This is unsurprising- most people would associate a ‘full-body workout’ either as a descriptive term for a gym session, rather than exercise, or something like swimming, which will work just about every muscle gently, and will mostly only build endurance (although, offset against that, the most physically impressive guy I have ever met set it all off as a swimmer, so if you know what you’re doing…). The thing is, resistance training (using weight as a load) fundamentally doesn’t work more than one or two muscle groups well without technique and effectiveness suffering, and so is not designed for full-body exercises. There is, however, an alternative that is- tension training.
I came across tension training in martial arts, where it is used to train the body to stiffen up when it is hit and thus absorb blows better. It basically consists of performing a range of motions, without any weight, very slowly and controlledly, but working against your own body to provide the load to work against. To explain- muscles work in antagonistic pairs, meaning one contracts to move a joint one way, and its partner contracts to move it in the opposite direction. The principle of tension training is that by tensing both muscles at once, if the joint is to move then the muscle contracting must overcome the force of the other muscle pulling against it, and thus both muscles get worked. Tension training done properly involves performing very slow, simple motions whilst endeavouring to keep every muscle in your body tensed up as you perform the motion.
A key feature of tension training is breathing- you should do long, controlled breaths in time with the motion, breathing out as you contract and perform the stretch (your breath should sound very strained, like a sound effect from some deathly minion in a fantasy film, as it forces its way through your tense neck) and breathing in as you relax and return to position. To use an example, if your chosen motion were a bicep curl, then you would tense up all your muscles (bicep, tricep, chest, back, neck, legs, abdominals, everything) and breathe out in one long, slow, 10 second breath as you contracted the biceps and brought them up to your chest, and then relax and breathe out as you return to your starting position. This strict breathing pattern deprives your body of oxygen, forcing it to learn to use it more efficiently and greatly benefiting your muscular endurance, whilst the exercise itself works muscles for strength (all muscles get a bit of work, but the ones worked hardest are those moving, so the biceps and triceps in the example above). Tension exercises can be incredibly tiring, especially if done at the end of a session (which is probably where they belong to prevent you becoming too tired to do anything else), but are worth the effort for the benefits they can reap- they should take about 3-5 minutes overall, over a variety of motions and exercises (some martial arts incorporate them into a ‘dance’ of strikes and blocks for variety and training), and should provide an interesting line of exercises for everyone from the lowliest newbie trying to fulfil a New Year’s resolution, to the most musclebound hunk who’s in the gym 4 times a week, every week, for the last 5 years. I thoroughly recommend them.

Muscle time

OK, time for part two of my ‘gym-less workouts’ guide, this time dealing with the important stuff- muscular strength. Strength is a fairly blanket term, covering every one of the (numerous) muscle groups, different motions and the various aspects of size, explosive power, maximum strength and endurance. The general rule that applies to pretty much any exercise is that less reps on a higher load (so more weight, more difficult technique, doing the motion in a slower, more controlled fashion etc.) will build more power and strength, whereas more reps on a lower load will build lean, wiry muscle built for speed and endurance. It’s also important, as with fitness exercises, to do a quick warm-up to ensure your muscles are ready for work- this generally takes the form of a few very easy exercises just to get them moving and the blood flowing. A quick note on sets and reps too- it is standard practice among gym goers to do exercises in ‘sets’ (normally three of them, but any number from 1-5 is fine), each of them containing a fixed number of repetitions, or ‘reps’ of that exercise. Each set is separated by a break of anywhere from 30 seconds to 2 minutes. This way of working allows you to do more stuff than you could in a single sitting, but the resting and then reworking of your muscles will also pay dividends in terms of effectiveness. I have tried to offer some advice as to the amount you should be doing, but adjust to whatever feels right for you. Try to set yourself small, achievable targets to work towards, as these can be the difference between somebody who turns into a muscle-bound hunk to just a bloke who works out and always looks the same way.

One final thing- it’s not good to go and blow yourself out with a high-intensity session every day. These exercises are probably best done in one big ‘gym session’, and if you cycle through the various exercises, giving that muscle group, rather than your whole body, a rest, then this circuit training will be a great fitness workout too. But they can work just as well done whenever is most convenient, and trying to do a big session every single day will just tire you out to the point at which your muscles can’t recover (and thus can’t build effectively) and you won’t be able to keep up a good intensity. A gym goer will rarely do more than three sessions a week, with rest days spread between them , to ensure maximum effectiveness. Sessions should also be well planned in advance (it makes sense for anyone who wants to get serious about this to plan a weekly routine and just change the number or reps & sets as you improve)- good planning separates those who are always improving and the blokes who go to the gym three times a week for years and never look any different.

OK, now to start on the actual exercises (for which a rucksack will be necessary for a number of the exercises), working from the bottom up:

LEGS
Where
: Quadriceps (quads) are located at the front of the thigh, hamstrings (or ‘leg biceps’) at the back and calves down the back of the foreleg, behind the shin bone
Exercise: Run. Or cycle, if that’s more your thing, but to my mind you can’t really do better than running- it’ll do everything. Sprint sets, running as fast as possible over short, 20 metre distances, will work for strength (try sprinting out and then back-pedalling for a good, mixed workout)- sets of 10 sprints, separated by a minute rest, should do nicely, increasing the number of sets you do as you get fitter and stronger. A good run at moderate intensity should will work wonders for both muscle mass and endurance- it should start to hurt from about 10-20 minutes onwards, in both heart and legs, but try to push on through the pain and it’ll be worth it. However, if you feel a stitch coming on then slow to a walk and take a rest for it to subside, otherwise you’ll be in for a very uncomfortable time and you won’t work as effectively. If you can manage regular half-hour runs, at whatever speed you can, that will do nicely
If you really want to work on your leg strength but for some reason don’t want to do sprints (wanting to mix it up a bit is a good reason- laziness is not!), then load up a backpack with as much weight as it can take, and stand with feet shoulders-width apart. To work the quads, squat down as deep as you can, trying as much as you can to keep your feet flat to the floor, and then stand up- if you really want to feel the burn then do so as slowly as you can. Three sets to destruction (as many as you can do), with a 90 second rest between each should work. For calves, just go up onto tiptoes and back down again repeatedly. These should be done as quickly as possible for as long as possible- but make sure your calves are well-stretched beforehand, as they are particularly prone to cramps and pulling. If this is too easy (which it probably will be), try doing it on only one leg at a time, and do lots of fast reps

ABDOMINALS (ABS)
Where:
 As the name suggests, in the abdominal area- around the belly. These muscles are what form a six pack, and are often hidden by a belly- so if you want to show them off, you’re going to need to lose the flab (which I have yet to do!)
Exercise: There are a huge variety of abdominal exercises you can do- sit-ups, medicine ball drops, leg raises etc.- but one of the most reliable is crunchesLie with your back flat on the floor, hips and knees forming right-angles (so your shin should be parallel with your back). Grab your ears with your hands (you can let go if you’re used to the motion, but it helps to prevent your arms swinging you up), and sit up very slightly, pulling your shoulder blades just off the floor and touching your elbows to your knees. Then drop back down and repeat. Try to keep your knees in position, and do not pull yourself up with your arms. All abdominal exercises are done in an isotonic fashion (low load, fast motion, high reps), and this is no exception- crunches should be done as fast as you can, each one ideally taking around a second (but if you can’t quite keep up then don’t worry- it’ll come). After 20-30 reps, your belly should start to hurt- keep on pushing until you physically cannot do any more. Then take a 90 second break and do another set to destruction, for as many sets as you can do comfortably.
Another muscle group typically grouped with the abs are the obliques, which are similar muscles down each side of your body. A lot of exercises (and gym goers) tend to ignore them, but they are important nonetheless. A small adaptation to crunches can work the obliques- when lifting yourself off the floor, twist your body so that your right elbow touches your left knee. Then, on the next rep, touch your left elbow to your right knee and so on, continuing to alternate. The same ‘burning’ sensation should be felt down your sides as well as in the belly, which tells you you’re doing a good job.

OK, all that rambling at the start took up quite a lot of room, so I’m going to have to continue this in my next post. Until then- see what you can do on the aerobic and flexibility fronts, and try not to burn yourself out too quickly (advice I have been breaking recently =] ).

Who needs a gym?

This is a post I’ve been trying not to resort to in a while- not because I think the content’s going to be bad or anything, just that it’s a bit of a leap from my usual stuff and because it’s actually going to be a bit too easy. However, given the fact that a) the Euros, Wimbledon and the Olympics are all on over the next month or so, b) my last few posts have been of a sporting persuasion, c) I vaguely know what I’m talking about here and d) I keep forgetting my other ideas, I thought I’d bite the bullet and go for it. So here it is, my first ever advice column for this blog: how to get fit and strong without the use of any gym equipment.

Fitness can be broadly (and fairly inadequately) split into three separate fields: aerobic & cardiovascular, muscular and flexibility. I’ll deal with all three of these separately, and am almost certainly going to have to add another post to fit all of the ‘muscular’ area into, but I’ll start with flexibility.

Some would argue that flexibility is not really part of fitness, and it’s true that, on the surface, it doesn’t appear to fit into our typical classification of the subject. However, it is just as much a matter of our physical ability to perform as any other, and thus probably has the right to be included as part of this list. The main reason I have misgivings about talking about it is simply personal knowledge- I don’t really know any exercises designed to improve flexibility.

However, that doesn’t mean I can’t offer advice on the matter. The first, and simplest, way to improve general flexibility and range of motion is just to get active. Every movement of the joints, be they legs, arms, back or wherever, makes them that tiny bit freer to move over that range and thus a little bit more supple- running, cycling, whatever. It is partly for this reason too that it is important to warm up and stretch prior to exercise- by extending the muscles longer than they are naturally used to, then they are prepared for that greater range of movement and are thus capable of easily moving across the more limited range that general exercise demands. Perhaps the easiest ‘flexibility exercise’ one can do is tree climbing  (which also happens to be endlessly entertaining if you can find some good trees), but stuff like yoga can be learnt without too much difficulty from the internet if you’re serious about improving your flexibility. Otherwise, I would suggest joining an appropriate club. Doesn’t have to be yoga or gymnastics or anything quite so extensive- martial arts (my personal preference, and a superb full-body endurance exercise) and rock climbing (which will build forearms and biceps the size of Mercury) are great for teaching your body a whole new way of moving, and are also a lot more fun for the casual enthusiast.

OK, now onto something I can actually talk about with some authority: aerobic and cardiovascular fitness. The goal when training cardio is simply to get the heart pumping- cardiac muscle works like any other muscle in that it can be built by straining it, breaking muscle fibres and having the body re-knit them into a bigger, stronger structure capable of doing more. Cardiovascular training should ideally be done at a rate upwards of 160 bpm (heartbeats per minute), but if you’re struggling to get into exercising then it’s best to start off with a more casual workout. Regular walking can quickly burn off excess fat and build up at least preliminary fitness (although be warned- to be most effective one should aim for a rate of around 120 steps per minute, or less if you’re struggling to keep that pace up, for at least 20 minutes. Bring an iPod too stave off boredom). The average resting heart rate of a person is somewhere around 70bpm- if yours is anything below 80 or so (measure it at home by counting the number of thumps on the left of one’s chest over the space of a minute) and you’re relatively serious about getting fit, then it’s best to step up a gear.

Just about any activity that gets the heart racing (remember- 160bpm minimum, 180 as a target) is suitable for increasing cardio fitness, be it running, cycling, swimming, rowing, football, rugby or whatever else you can think of- the only important thing is to try and keep the motion fast. Running or cycling on a machine (if you have access to one) will make it easier to keep up a pace (since air resistance is decreased), but reduces your workload, meaning less muscle is built on the legs and the effectiveness of the exercise is reduced, meaning you have to work out for longer. Rowing is an especially good exercise for both you muscles and your cardio, but access to a machine can be problematic. Oh, and a word of warning about swimming- whilst it’s a great full-body workout and can really improve your speed, it’s only going to be as effective as a good run or cycle if done at a fast pace, for quite a long time; moderate speeds won’t cut it.

You don’t have to judge one’s activity by heartbeat, as this can be understandably tricky if you’re pounding along a road, but learn to get a feel for your intensity levels. A low intensity, when you’re still able to comfortably breathe and speak (so about up to a fast walk), is a little too slow for proper aerobic work- moderate, where you can feel the breath coming hard but can still speak about normally, is fine for aerobic work over sets of about 20 minutes or longer- but keep going for as long as you can/have the time for. High-intensity work is you going flat out, where speaking becomes next to impossible. It’s probably best left until you’ve achieved a good level of fitness, but if you can manage it then just short bursts of less than 8 minutes (which is about how long you should be able to keep it up) just a few times a week can reap rewards.

A final thing about cardio, before I devote Wednesday’s post to the nitty gritty of muscular workouts- it’s at its most enjoyable when done as part of a sport. Pounding round the roads on a daily jog is almost certainly going to be a more effective workout, and if you’re really looking to seriously improve your fitness then it’s probably more the way to go- but the attraction can quickly fall away in the face of a damp Wednesday when you’re nursing a calf strain. But sport is without a doubt the best way to build up a good level of fitness and strength, make a few mates and have some fun in the process. Some are better than others- boxing is the single best activity for anyone after a cardiovascular workout, whilst something like golf doesn’t really count as exercise- but there’s something for everyone out there, if you know where to look.

Now, to plan a muscular workout for next time…